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Abstract: With growing consumer concerns about food safety, developing methods for
the field-based, non-destructive, and rapid detection of pesticide residues is becoming in-
creasingly critical. This study introduces a field-based, non-destructive, and rapid method
for detecting pesticide residues on kumquat surfaces. Initially, spectral data from the vis-
ible/near-infrared (VNIR) light bands were collected using a handheld spectrometer from
kumgquats treated with three pesticides at various gradient concentrations and water. The
data were then preprocessed and analyzed using machine learning (SPA-SVM) and deep
learning models (1D-CNN, 1D-ResNet) to determine the optimal model. Features from
the convolutional layer of the 1D-ResNet model were extracted for visualization and anal-
ysis, highlighting significant differences in features between the different pesticides and
across varying concentrations. The results indicate that the 1D-ResNet model achieved
97% overall accuracy, with a macro average of 0.96 and a weighted average of 0.97, and
that precision, recall, and Fl-score approached 1.00 for most pesticide treatment gradi-
ents. The results of this research verified the feasibility of the handheld spectrometer com-
bined with 1D-Resnet for the detection of pesticide residues on the surface of kumquat,
realized the visualization of pesticide residue characteristics, and also provided a refer-
ence for the detection of pesticide residues on the surface of other fruits.

Keywords: kumquat; pesticide residue detection; handheld spectrometer; 1D-ResNet;
field-based detection; non-destructive detection

1. Introduction

The rational use of pesticides is essential for protecting crops from pests and diseases,
thereby ensuring both yield and quality. However, improper pesticide application, such
as over-spraying or misuse, can result in excessive pesticide residues, posing significant
risks to human health and the environment. The primary route through which pesticide
residues enter the human body is dietary intake, with fresh agricultural products such as
fruits and vegetables being key vectors due to their direct consumption characteristics [1].
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During the post-harvest handling of fruits, pesticides such as fungicides are often applied
using soaking or spraying methods, leading to the easy accumulation of residues on the
fruit skin [2], This risk is particularly prominent in certain citrus varieties—taking kum-
quats (Citrus japonica) as an example, their consumption involves chewing the skin di-
rectly or processing it, making pesticide residues on the skin more readily ingested by
humans. However, in the existing research on pesticide residues on fruit surfaces, there is
still a significant gap in the detection systems available for specialty varieties such as kum-
quats. This research lag not only hinders the quality control of specialty agricultural prod-
ucts but may also pose potential health risks to consumers, underscoring the urgent need
for the development of targeted detection technologies [3-5].

Although gas chromatography (GC) and high-performance liquid chromatography
(HPLC), as established analytical techniques, exhibit high sensitivity and multi-residue
detection capabilities, their applications are constrained by complex pretreatment proce-
dures, prolonged analytical durations, and the inherent limitations of destructive sam-
pling. Therefore, to better meet the demands of food safety and quality control in modern
agriculture, and to improve detection efficiency, reduce experimental costs, and ensure
real-time monitoring of agricultural product safety, there is an urgent need to develop
field-based, non-destructive, and rapid pesticide residue detection technologies for fruit
surfaces [6-8].

Spectroscopic techniques are widely favored for their non-destructive, rapid, and
multi-component detection capabilities [9]. Hao et al. [10] employed fluorescence hyper-
spectral imaging (HSI) to detect surface pesticide residues on navel oranges, analyzing
varying concentrations of chlorpyrifos (0-2 mg/kg) and carbendazim (0-5 mg/kg). Sun et
al. [11] used hyperspectral technology to collect data from 120 lettuce leaf samples treated
with different concentrations of imidacloprid (1:500, 1:800, 1:1500, and a water control).
Wang et al. [12] utilized borohydride-treated silver nanoparticles as surface-enhanced Ra-
man spectroscopy (SERS) substrates to detect pesticide residues on apple skins by spray-
ing diluted glyphosate and nine other pesticides (0.1 mg/L) and collecting data with a
Raman spectrometer. Pham et al. [13] developed a novel SERS platform by replicating the
structure of rose petals, combining silver coatings and silver nanoparticles (AgNPs), and
creating an efficient substrate for detecting pesticide residues on mango surfaces; the de-
tection limits for imidacloprid, acephate, and chlorothalonil were 0.02 mg/kg, 5 x 10~
mg/kg, and 5 x 10 mg/kg, respectively. Soltani Nazarloo et al. [14] applied 500-fold di-
luted dibromophos to tomato surfaces and used visible/near-infrared (VNIR) spectros-
copy to detect pesticide residues in the 400-1050 nm range.

In recent years, advancements in machine learning and deep learning technologies
have significantly enhanced the rapid analysis and real-time detection of spectral data. As
a result, the integration of spectroscopy with machine learning and deep learning algo-
rithms has become a key focus in pesticide residue detection research [9,15]. Peng et al.
[16] used HSI in combination with a stacked ensemble learning (SEL) model to detect mal-
athion residues in sorghum grains. By applying competitive adaptive reweighting sam-
pling and minimum angle regression for feature extraction, they achieved a root mean
square error of 0.6940 mg/kg on the calibration set. Ye et al. [17] employed hyperspectral
technology alongside machine learning and deep learning to detect four types of mixed
pesticides on grapes. For Vis-NIR spectra, the ResNet model achieved the highest accu-
racy, exceeding 93%, while the LR model performed best for NIR spectra, with accuracy
surpassing 97%. Ong et al. [18] utilized VIS/NIR spectroscopy (400-2498 nm) to collect
spectral data from the target samples. The acquired data were then input into a one-di-
mensional convolutional neural network (1D-CNN) model for analysis, demonstrating
that the 1D-CNN model significantly outperformed traditional partial least squares re-
gression (PLSR) in terms of prediction accuracy. Hu et al. [19] diluted imidacloprid,
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malathion, pyraclostrobin, and p-cypermethrin at a 1:1000 ratio and sprayed them on can-
taloupe surfaces. Using VNIR and shortwave infrared (SWIR) HSI systems, they collected
200 cantaloupe samples (800 data points) and achieved a detection accuracy of 94% for
four pesticide residues when combined with a 1D-CNN model featuring an attention
mechanism.

Portable spectrometers have enabled rapid field-based detection, and their applica-
tion in agriculture has been enhanced by integrating machine learning and deep learning
techniques. Sun et al. [20] collected spectral data from lettuce leaves using a portable spec-
trometer and employed SVM and GSA-SVM classification models to detect fenvalerate
and chlorpyrifos residues in 240 samples; by optimizing preprocessing methods and se-
lecting characteristic wavelengths, they achieved efficient and accurate detection. Lap-
charoensuk et al. [21] used a portable NIR spectrometer combined with PLS-DA, SVM,
ANN, and PC-ANN to detect chlorpyrifos residues on cabbage, attaining accuracies be-
tween 0.92 and 1.00. Kuo et al. [22] gathered spectral data from pesticide samples with a
portable Raman spectrometer and detected chlorpyrifos, fenvalerate, and carbofuran res-
idues in 3000 samples, ultimately developing a CNN model optimized by the CSO algo-
rithm that reached an accuracy of 89.33%. Zhu et al. [23] introduced a novel approach that
integrated SERS with 1D-CNN for the rapid on-site identification of pesticide residues in
tea; their cloud-based 1D-CNN model, which utilized augmented SERS data acquired by
a handheld Raman spectrometer, outperformed traditional methods in accuracy, stability,
and sensitivity while requiring minimal spectral preprocessing.

Based on these studies, we propose a field-based, non-destructive, and rapid detec-
tion method that combines handheld spectrometry with deep learning to analyze pesti-
cide residues on kumquat surfaces. This method is simple to operate, requires no sample
pretreatment, and features a streamlined data processing workflow that simplifies feature
extraction and enhances overall efficiency. Furthermore, an in-depth analysis of the
model’s feature extraction reveals the characteristic distribution and concentration varia-
tions of various pesticides, providing detailed insights for decision-making. These find-
ings offer valuable technical support for the safety regulation of kumquats and other spe-
cialty crops, and they lay a solid foundation for further applications of portable spectral
detection technology in agriculture.

2. Materials and Methods
2.1. Sample Preparation

The experiment utilized 810 oil-peel kumquats from Yangshuo, Guilin, Guangxi. All
kumquats were initially washed to remove surface contaminants and dirt, ensuring the
accuracy of data collection. After washing, the fruits were air-dried for 24 h in a well-
ventilated laboratory to standardize conditions for the experiments.

Based on the analysis by Zeng et al. [24] on pesticide residue violations in Chinese
vegetables and fruits, as well as the local citrus pest and disease control and safe pesticide
use guidelines in Guilin, we selected prochloraz, cypermethrin, and difenoconazole for
investigation. These three pesticides are widely used in citrus cultivation and represent
common types of insecticides and fungicides. The specific details of these three pesticides
are as follows:

e Prochloraz: 450 g/L emulsifiable concentrate, manufactured by Shandong Xinbang
Biochemical Co., Ltd. (Linyi, China). A broad-spectrum fungicide primarily used to
control fungal diseases such as anthracnose, blue mold, and green mold. It is also
employed in post-harvest treatments, such as fruit soaking, to extend shelf life.

e  Cypermethrin: 20% emulsifiable oil, manufactured by Zhejiang Weilda Chemical
Co., Ltd. (Dongyang, China). A broad-spectrum insecticide mainly used for
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controlling various citrus pests, including leafminers, red mites, Panonychus citri,
and slug caterpillars.

e  Difenoconazole: 10% water-dispersible granules, manufactured by Syngenta Nan-
tong Crop Protection Co., Ltd. (Nantong, China). A systemic fungicide with long-
lasting effects, primarily used to control citrus scab and anthracnose. According to
the same study by Zeng et al. [24], pesticide residue monitoring in China from 2021
to 2022 found that difenoconazole exceeded the regulatory limit in 5 out of 27 tested
citrus batches.

These pesticides were mixed with water to prepare solutions at the following con-

centrations:

e  Prochloraz: 1 mg/L, 4 mg/L, 7 mg/L, 10 mg/L, 50 mg/L, 100 mg/L, 500 mg/L, 1000
mg/L;

e  Cypermethrin: 0.5 mg/L, 1 mg/L, 5 mg/L, 10 mg/L, 50 mg/L, 100 mg/L, 500 mg/L, 1000
mg/L;

e Difenoconazole: 0.1 mg/L, 0.3 mg/L, 0.6 mg/L, 0.9 mg/L, 5 mg/L, 10 mg/L, 50 mg/L,
100 mg/L, 500 mg/L, 1000 mg/L.

A total of 760 kumquat samples were randomly assigned to 26 treatment groups
based on these pesticide concentrations, and each was uniformly sprayed. An additional
50 samples were sprayed with water alone to serve as a control group. After treatments,
the samples were left in a ventilated area for 24 h before data collection commenced. Due
to natural decay and other issues during the experiment, the number of samples in each
group varied.

2.2. Data Collection

Spectral data were acquired from kumgquat surfaces using the PSR+3500 spectrome-
ter (Spectral Evolution, Inc., Haverhill, MA, USA), which offers a broad spectral range
from 350 nm to 2500 nm. The spectrometer was equipped with a dedicated reflective con-
tact probe, which was connected to the main body of the spectrometer via optical fibers.
The handheld probe, featuring a standard spot size of 10 mm and a built-in 5-watt tung-
sten halogen light source, facilitated close-range spectral data collection. Data processing
was conducted using DARWin SP Data Acquisition software 1.5, ensuring the meticulous
handling and analysis of spectral information.

The spectrometer interfaced with a laptop via Bluetooth, using the DARWin SP Data
Acquisition software installed on the device. The probe was firmly pressed against the
kumgquat surface, and spectral data were transmitted to the software each time the collec-
tion button on the probe was pressed, displaying the acquired spectral curve. To ensure
the accuracy and stability of the data, samples were collected from different parts of each
kumquat, with four readings taken per sample to minimize the impact of skin imperfec-
tions and variations in the probe’s handling angle.

Before each batch of data was collected, spectral readings from a white reference
board and a black reference board were taken to facilitate subsequent calibration and base-
line correction. Once collection was complete, all spectral data were stored on the con-
nected computer and underwent preliminary processing with the DARWin SP Data Ac-
quisition software. Each dataset was recorded under a unique sample identifier and in-
cluded information on the corresponding pesticide solution gradient group, ensuring ac-
curacy and traceability for future analysis.

After accounting for experimental attrition, a total of 3146 spectral datasets from
kumgquat samples were obtained. These datasets were divided into training and test sets
at a 7:3 ratio, as detailed in Table 1. These data were used for subsequent spectral analysis
and for training and validating models aimed at classifying pesticide residues.
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Table 1. Dataset partition.

Type Training Set Test Set Total Set
Water 200 60 260
Prochloraz 616 264 880
Difenoconazole 742 318 1060
Cypermethrin 662 284 946

2.3. Spectral Data Preprocessing

To mitigate light source fluctuations, detector response variability, background
noise, and dark current interference, spectral data were subjected to a black and white
correction. This process used measurements from white and black reference boards ac-
quired during each batch of sample measurements and applied the following equation:

I-B
R =w=s

)

where R represents the corrected spectral data, I is the original spectral data, W is the
data from the white reference board, and B is the data from the black reference board.

This step ensured that the normalized data fell within a range from 0 to 1, where 0
indicates the spectral response of the black reference board (no light reflection) and 1 rep-
resents the spectral response of the white reference board (maximum light reflection). By
adjusting the raw spectral data relative to stable reference points, this correction compen-
sates for fluctuations in the light source intensity and variations in detector sensitivity
over time. As a result, it reduces the impact of instrumental drift and environmental
changes, enhancing the comparability of data collected under different conditions and fa-
cilitating subsequent data analysis.

Following the black and white correction, the spectral data for each sample were
smoothed using a Savitzky—Golay (SG) filter to reduce random noise while preserving
important spectral features. The filter applied a second-order polynomial fitting within a
moving window for each row of data. The smoothed value (i) for each data point y(i)
was calculated as follows:

m
§O= ) v+ @
k=—m
where ¢, represents the polynomial coefficients, m is half of the window size, and
2m + 1is the full window size. k represents the relative position of the data points within
the window, ranging from —m to m. In this study, we used a window size of 15.

2.4. Classification Model
2.4.1. SPA-SVM

SPA (successive projections algorithm) is an efficient feature selection method partic-
ularly well suited for datasets with high-dimensional feature spaces, such as spectral data.
The core of the SPA method involves an iterative process of variable selection, where each
iteration selects a variable that has the maximum projection with the residuals of the cur-
rent model [25].

A support vector machine (SVM) is a robust classifier that identifies an optimal hy-
perplane in the feature space by maximizing the margin between classes. When combined
with SPA, SVM utilizes the feature bands selected by SPA as inputs to construct the deci-
sion surface. In this study, the RBF (radial basis function) kernel was used for nonlinear
classification, and parameters C and y were optimized through grid search and 5-fold
cross-validation to achieve the highest accuracy.
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2.42.1D-CNN

1D-CNN is specifically designed for processing one-dimensional data, such as time
series, audio signals, or spectral data. It has evolved from traditional 2D convolutional
networks to meet the feature extraction requirements of 1D signals [26].

In this study, a 1D-CNN model was constructed with an initial convolutional layer
for extracting low-level features, followed by three convolutional layers with kernel sizes
of 9, 7, and 3 and output channels of 64, 128, and 256, respectively, to refine the feature
representation progressively. Max pooling layers were incorporated to reduce dimension-
ality, enhance computational efficiency, and mitigate overfitting. The resulting feature
maps were flattened and processed by a fully connected layer to yield a probability dis-
tribution over the target categories. The model was optimized using the RMSprop opti-
mizer with an initial learning rate of 0.0005 and L2 regularization to reduce overfitting. A
StepLR scheduler reduced the learning rate to 10% of its initial value every 25 epochs,
improving convergence and stability in later training stages. The model was trained for
100 epochs with a batch size of 32.

2.4.3. 1D-ResNet

1D-ResNet adapts the classic deep residual network (ResNet) tailored for one-dimen-
sional data such as time series and spectral measurements. ResNet mitigates the degrada-
tion problem in deep networks by incorporating skip connections, enabling the effective
training of deeper architectures [27].

In this study, the 1D-ResNet model consisted of an initial convolution layer, multiple
residual layers composed of BasicBlocks, and a final, fully connected layer, as depicted in
Figure 1. The input features were processed through a 7 x 1 convolution layer followed by
batch normalization and then downsampled through ReLU activation and a 3 x 1 max
pooling layer. Subsequent layers (from layer 1 to layer 4) progressively extracted higher-
level features and effectively addressed the issue of gradient vanishing, common in deep
learning. Each layer also employed forward hooks to facilitate feature capture and analy-
sis. The output features, after being processed by an adaptive average pooling layer, were
flattened and fed into a fully connected layer for classification, with an output dimension
of 27, corresponding to 27 categories. The remaining parameters were consistent with
those used in 1D-CNN.
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Figure 1. Structural diagram of the 1D-ResNet model.

2.5. Model Evaluation Criteria

In evaluating model performance, key metrics such as accuracy, precision, recall, and
F1-score were employed. These metrics were derived from the confusion matrix, which
comprised true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). TP indicates the number of positive samples correctly identified, TN denotes the
number of negative samples correctly identified, FP represents negative samples mistak-
enly classified as positive, and FN corresponds to positive samples mistakenly classified
as negative.

Accuracy reflects the model’s overall capability to correctly classify the test dataset
and is a measure of global performance, defined by the following formula:

| ~ TP + TN .
CoUracy = Trp ¥ TN + FP + FN

Precision indicates the proportion of actual positives among all samples predicted as
positive, measuring the model’s precision, i.e., its ability to minimize FP, as shown below:

TP
i P 4
Precision TP T FP 4)

Recall denotes the proportion of actual positives that were correctly identified by the
model, assessing the model’s capability to capture positive samples and minimize FN,
expressed as

Recall = — 0 )
CCt = TP T EN

The F1-score is the harmonic mean of precision and recall, considering the balance

between them, which is particularly useful in scenarios of class imbalance. It is defined as
Precision X Recall

- =2X 6
F1=score =2 Precision + Recall ©)
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In multi-class classification, summary metrics such as macro average and weighted
average are widely used. Macro average is computed as the unweighted mean of preci-
sion, recall, and Fl-score across all classes, treating each class equally regardless of its
sample size. In contrast, weighted average accounts for class imbalances by weighting
each metric according to the number of samples in that class, thereby reflecting its true
impact on overall performance.

2.6. Model Decision Visualization

Grad-CAM (Gradient-weighted Class Activation Mapping) is a visualization
method that highlights the most influential feature regions in deep learning models for
specific class predictions, thereby elucidating the model’s decision-making process. It gen-
erates class activation maps by computing the gradient-weighted contributions of the tar-
get class relative to the network’s convolutional feature maps.

The process begins by identifying the model output category c¢ to be interpreted,
with the score for category ¢ in the model output layer denoted as y.. The score y, is
9y

< of the last convolutional layer,
Bai_ j

where a;; represents the k activation in the layer. These gradients are subjected to global

then backpropagated to obtain the output gradients

average pooling over all spatial locations (indexed by i and j) to calculate the global av-
erage weight of each feature map, denoted as GAF,, according to the formula below:

GAR, =L ZM ZN O%e. )
¢ MxN i=1 j=1 aai‘j

where M x N represents the dimensions of the feature map.
The GAP results are then multiplied with the feature maps a; of the last convolution
layer to produce weighted feature maps:

z

CAM! = ReLU (Zk_chPC : a,ﬁ) (8)

Here, a is the k activation in the ! layer feature map, and the ReLU function en-
sures that only positive contributions are retained. The CAM image is then upsampled to
match the size of the original input spectral data using cubic interpolation. Finally, the
upsampled results are visualized using a stacked graph approach.

2.7. Software Environment

The implementation of the deep learning algorithms for this study utilized Pytorch
1.8.0, programmed in Python version 3.7, with development carried out using PyCharm
2023.3.7. The experiments were conducted on an Intel Core i7-7700 CPU @ 3.60GHz with
32.0 GB of RAM, an NVIDIA GeForce GTX 1070 GPU, and the Windows 10 operating
system.

3. Results Analysis and Discussion
3.1. Comparative Results of Different Classification Models

In this study, we compared the performance of three different models—SPA-SVM,
1D-CNN, and 1D-ResNet—on the task of pesticide residue classification. To ensure the
reliability and stability of the results, all models were evaluated using fivefold cross-vali-
dation. The precision, accuracy, macro average, and weighted average values presented
in Table 2 represent the mean outcomes from this cross-validation.

The results show that the 1D-ResNet model outperforms both the SPA-SVM and 1D-
CNN models across multiple metrics. Specifically, in terms of precision, 1D-ResNet
achieves a perfect score of 1.00 for the water-treated samples, indicating its ability to ac-
curately distinguish between pesticide-treated and non-treated samples, which is crucial
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for pesticide residue detection. In contrast, both SPA-SVM and 1D-CNN exhibit some
false positive issues. Furthermore, 1D-ResNet demonstrates the highest precision in clas-
sifying other pesticides, highlighting its superior ability to differentiate between pesticide
types.

In terms of accuracy, 1D-ResNet achieves an overall accuracy of 0.97, which is higher
than both SPA-SVM (0.72) and 1D-CNN (0.96), indicating its strong predictive perfor-
mance across most categories. The macro average for 1D-ResNet is 0.96, demonstrating
consistent performance across pesticide classes, while 1D-CNN shows a balanced perfor-
mance (0.89), and SPA-SVM lags behind with a macro average of 0.66, indicating lower
overall classification capability, especially for the samples treated with prochloraz and
difenoconazole. The weight average metric further corroborates the superior performance
of 1D-ResNet, taking into account the sample distribution across categories.

In conclusion, the 1D-ResNet model demonstrates superior performance in terms of
precision, accuracy, macro average, and weighted average, making it the optimal choice
for pesticide residue detection. Therefore, 1D-ResNet was selected as the decision model
for pesticide classification in this study.

Table 2. Comparison of different classification models.

Model Precision (%) Accuracy Macro Avg Weighted Avg
Water Prochloraz Difenoconazole Cypermethrin (%) (%) (%)
SPA-SVM 0.89 0.49 0.67 0.87 0.72 0.66 0.72
1D-CNN 0.95 0.81 0.90 0.96 0.92 0.89 0.92
1D-ResNet 1.00 0.93 0.94 0.99 0.97 0.96 0.97

Table 3 presents the detailed classification outcomes of the 1D-ResNet model for var-
ious pesticides and their concentration gradients. For most categories, the precision values
approach or reach 1.00, indicating that the model seldom misclassifies these categories.
Similarly, the recall rates are close to or equal to 1.00, demonstrating that the model effec-
tively identifies true-positive instances with minimal missed detections. The F1-scores,
which integrate both precision and recall, also reflect exceptional performance across most
categories. Notably, the Fl-scores for all concentration categories of cypermethrin are
nearly 1.00 or very close to it, demonstrating superior performance within this group.

However, within the prochloraz group, the 1 mg/L concentration exhibits the lowest
precision (0.80) and a recall of 0.84. This indicates that a relatively low proportion of the
model’s positive predictions are true positives, likely due to the spectral similarity be-
tween low-concentration prochloraz and water, which hinders accurate feature recogni-
tion. The low recall further suggests that many true positives are missed at this concen-
tration. Additionally, the 50 mg/L concentration of difenoconazole shows the poorest per-
formance across all metrics, highlighting significant classification challenges. Since the
model performs well at lower concentrations (e.g., 0.1 mg/L), where spectral features are
more distinct, spectral overlap is unlikely to be the primary issue. We suspect that the
insufficient number of training samples at 50 mg/L impeded the model’s ability to learn
its distinguishing features.

While the 1D-ResNet model demonstrates near-perfect performance overall, some
challenges persist. In particular, the model struggles with accurately classifying 1 mg/L
prochloraz and 50 mg/L difenoconazole, suggesting that it may not fully capture the sub-
tle spectral features in these cases. We attribute these issues partly to spectral similarity
and the limited number of training samples. To address these shortcomings, we plan to
further optimize the model’s parameters and structure, as well as expand the training da-
taset.
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Table 3. Detailed classification outcomes for various pesticides across concentration gradients.

Type Concentration (mg/L) Precision (%)  Recall (%) F1-Score (%)
Water 0 1.00 1.00 1.00
1 0.80 0.84 0.82
4 0.89 1.00 0.94
7 1.00 1.00 1.00
10 0.95 0.83 0.88
Prochloraz 50 0.89 0.85 0.87
100 1.00 0.98 0.99
500 0.93 1.00 0.96
1000 1.00 0.94 0.97
0.1 1.00 0.96 0.98
0.3 0.95 1.00 0.98
0.6 0.93 1.00 0.97
0.9 0.96 0.96 0.96
Difenoconazole > 1.00 1.00 1.00
10 1.00 1.00 1.00
50 0.80 0.80 0.80
100 1.00 0.98 0.99
500 0.98 1.00 0.99
1000 0.86 0.83 0.84
0.5 0.98 1.00 1.00
1 1.00 1.00 1.00
1.00 1.00 1.00
Cypermethrin 10 1.00 0.98 0.99
50 0.98 0.98 0.98
100 0.98 1.00 0.99
500 1.00 1.00 1.00
1000 1.00 1.00 1.00

3.2. Spectral Data Analysis
3.2.1. Original Spectral Data of Samples

Figure 2 presents the average reflectance curves of the collected spectral data for all
pesticides and their respective concentration gradients, spanning wavelengths from 350
nm to 2500 nm. This range spans both the visible and near-infrared regions. Overall, the
average reflectance trends across the different pesticides and concentration gradients ap-
pear to be similar.

In the ultraviolet range (350-400 nm), high reflectance in the kumquat peel is at-
tributed to flavonoids and other UV-absorbing compounds that protect the plant from
ultraviolet radiation, enhancing its survival [28].

In the visible spectrum, the 400-495 nm band shows reduced reflectance due to ab-
sorption by pigments such as anthocyanins and carotenoids, which regulate light absorp-
tion and influence physiological functions. The 495-570 nm band exhibits higher reflec-
tance, correlating with the peel’s yellow-orange color due to the reflection of green light.
Between 570 and 700 nm, reflectance varies with chlorophyll and carotenoid content; chlo-
rophyll absorbs blue and red light, reducing reflectance, whereas increased carotenoid
levels enhance the reflection of red and yellow light [29-31].
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Figure 2. Mean reflectance of pesticide-treated kumquats (350-2500 nm).

In the near-infrared spectrum, the 700-1100 nm band displays reflectance fluctua-
tions related to water and sugar content in the fruit, with decreased reflectance influenced
by lower chlorophyll content and the red edge effect [32]. From 1100 to 1500 nm, the ab-
sorption characteristics of cellulose, hemicellulose, starch, and water are evident, with no-
table absorption valleys near 1200 nm and 1400 nm linked to the fruit’s texture, maturity,
and moisture content [33,34]. The 1500-2500 nm band is critical for analyzing internal
chemical components such as sugars, fatty acids, and moisture, with absorption valleys
primarily due to water from 900 to 1950 nm. Beyond 1950 nm, reflectance stabilizes, indi-
cating the saturation of absorbing substances or diminished absorption effects [35].

3.2.2. Spectral Absorption Characteristics

As shown in Figure 3, prochloraz, difenoconazole, and cypermethrin all contain aro-
matic rings and conjugated double bonds. In the ultraviolet—visible region (350-700 nm),
their spectral absorption is primarily governed by the aromatic and conjugated systems
within their molecular structures. Specifically, the presence of aromatic rings and conju-
gated double bonds facilitates m—7* and n—7t* electronic transitions, resulting in distinct
absorption peaks in the 350-450 nm range. In the 500-700 nm region, minor absorption
variations may arise due to differences in molecular scattering properties. In the near-in-
frared region (700-2500 nm), spectral features are predominantly attributed to the vibra-
tional and overtone absorptions of functional groups such as C-H, N-H, O-H, and C=0O.
[36-38].

T Oy

(@)

N

(b) (©)

Figure 3. Molecular structure diagrams of three pesticides. (a) Molecular structure of prochloraz;

(b) molecular structure of difenoconazole; (c¢) molecular structure of cypermethrin.

To further investigate the spectral characteristics of pesticides, this study applied
first-order and second-order derivative analyses to the raw spectral data. Figures 4 and 5
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illustrate the first derivative and second derivative spectra of water and three pesticides
(prochloraz, difenoconazole, and cypermethrin) in the 350-700 nm range. Compared to
the raw spectra, derivative processing enhances subtle spectral differences: the first-order
derivative highlights slope variations, facilitating the identification of upward and down-
ward trends, while the second-order derivative further accentuates inflection points and
peak—valley features, making it more sensitive to weak absorption bands and baseline
variations.

As shown in Figures 4a and 5a, the molecular structures of prochloraz, difenocona-
zole, and cypermethrin contain aromatic rings and conjugated double bonds, which in-
duce m—t* transitions in the UV region (200-400 nm) and result in distinct absorption
peaks [39—41]. These electronic transitions cause pronounced changes in the first-order
derivative spectra—particularly between 350 and 500 nm —while the second-order deriv-
ative spectra exhibit significant fluctuations in the 350-400 nm range, reflecting strong UV
absorption. In the visible region (400-700 nm), the absorption is relatively weak, though
minor absorption bands lead to modest variations in both first and second derivative val-
ues. Notably, in the 550-700 nm range, the spectral features on kumquat surfaces differ
markedly; the absorption peak near 550 nm is typically associated with chlorophyll b, cer-
tain carotenoids, and orange peel flavonoids, while the absorption valley at 660 nm corre-
sponds to the low-absorption region between the two main peaks of chlorophyll a (430—
450 nm and 640-680 nm). Furthermore, the strong absorption peak at 680 nm represents
one of the primary absorption points of chlorophyll a, which is critical for photosynthesis
[42,43].

In the 700-900 nm range, several small absorption peaks and troughs can be ob-
served, likely related to localized water absorption, post-peak chlorophyll, other biologi-
cal pigments (such as flavonoids and vitamins), and interactions between molecules and
internal plant structures [44]. The first and second overtone absorptions of the C-H, N-H,
and O-H bonds, associated with molecular vibrations, manifest as multiple small peaks
or troughs in this band [45], as shown in Figures 4b and 5b, with difenoconazole and pro-
chloraz exhibiting significantly different absorption characteristics compared to the other
two classes.

In the 900-1500 nm range, as shown in Figures 4c and 5¢, the pesticide and water
absorption peaks significantly influence each other, showing distinct spectral responses.
The first-order derivative spectra exhibit clear absorption peaks and troughs at 950 nm,
1000 nm, 1140 nm, 1225 nm, 1275 nm, 1360 nm, and 1380 nm, indicating the vibrational
modes of key chemical bonds such as C-H, O-H, and N-H and water molecule character-
istics [46,47]. The second-order derivative further reveals subtle peaks and troughs, where
the peaks and troughs for prochloraz and difenoconazole distinctly differ from other cat-
egories. In the 1500-1800 nm range, subtle absorption peaks and troughs are primarily
associated with higher-order overtones, combination frequencies, and the complexity of
sample components, revealing the vibrational modes of chemical bonds and their interac-
tions [48].

As shown in Figures 4d and 5d, the first-order derivative absorption trough at 1875
nm, significantly characterized by difenoconazole, relates to its conjugated system, as well
as C-H and N-H bond vibrations, water molecule interactions, and compound absorption
effects [49]; when combined with the second-order derivative, water samples in the 1875-
2500 nm range show more pronounced fluctuations than other categories, especially near
1900 nm, where the O-H bonds in water molecules exhibit significant absorption charac-
teristics in this band, while organic compounds” C-H and N-H bond absorptions are rela-
tively lower in intensity and narrower in bandwidth [50].
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Figure 4. First-order derivative of the spectrum for untreated and pesticide-treated kumquats. (a)
350-700 nm; (b) 700-900 nm; (c) 900-1800 nm; (d) 1800-2500 nm.
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Figure 5. Second-order derivative of the spectrum for untreated and pesticide-treated kumquats. (a)
350-700 nm; (b) 700-900 nm; (c) 900-1800 nm; (d) 1800-2500 nm.

3.3. Feature Visualization
Figure 6 displays the feature visualization results extracted from the convolutional
layers of the 1D-ResNet model, where the x-axis represents wavelength (nm) and the y-
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axis represents the intensity of spectral feature activations. Figure 6a compares the feature
visualizations of three pesticides and the water control group. Figure 6b—d displays the
feature visualizations comparing high, medium, and low concentrations of prochloraz,
difenoconazole, and cypermethrin, respectively, against the water control group. Each
subplot in Figure 6 includes the average reflectance of kumquat surfaces without residues

as a reference.
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Figure 6. Feature visualization results. (a) Feature visualization for each category; (b) feature visu-
alization of prochloraz at low, medium, and high concentrations; (c) feature visualization of difeno-
conazole at low, medium, and high concentrations; (d) feature visualization of cypermethrin at low,

medium, and high concentrations.

In Figure 6a, clear distinctions in features across categories are observed, especially
around 500 nm, 800 nm, 1050 nm, 1375 nm, and 1850 nm. The features of cypermethrin
and difenoconazole are more pronounced across the entire wavelength range, particularly
near 800 nm, where the feature peaks exceed those of the other categories. In the 350650
nm band, the features of cypermethrin and difenoconazole are more distinct than those of
other categories, with the highest peak for difenoconazole occurring near 550 nm. Within
the 650-1250 nm band, all categories show high activation values with multiple feature
peaks; the highest peaks occur near 800 nm, followed by a gradual decline. Prochloraz at
975 nm and cypermethrin near 1075 nm show distinct feature differentiation from other
categories; the water group exhibits a distinct peak near 1050 nm. From 1250to 1550 nm,
the feature contrasts among categories are evident, with cypermethrin and difenoconazole
both displaying characteristic peaks near 1375 nm with similar peak values. Prochloraz
shows four shoulder peaks near 1275 nm, 1335 nm, 1400 nm, and 1480 nm; the water
group has weak features from 1250to 1400 nm, with a peak appearing only at 1485 nm. In



Agronomy 2025, 15, 625

16 of 20

the 1550-1800 nm band, aside from the weak feature peaks of difenoconazole near 1615
nm and 1725 nm, the activation values of other categories tend towards zero, contributing
minimally to model decision-making. All categories exhibit significant feature peaks near
1875 nm, with cypermethrin’s features being the most prominent. From 2000 to 2500 nm,
the activation values of all categories tend towards zero, indicating minimal contribution
to model decisions; hence, this band is not displayed in subsequent subfigures and anal-
yses.

To facilitate the observation of changes across different concentration gradients of
each pesticide, the gradients were categorized into high, medium, and low, as specified in
Table 4.

Table 4. Classification of pesticide concentration gradients.

Type Low (mg/L) Median (mg/L) High (mg/L)
Prochloraz 1 4,7,10 50, 100, 500, 1000
Difenoconazole 0.1,0.3,0.6,0.9 5,10 50, 100, 500, 1000
Cypermethrin 05,1 5,10 50, 100, 500, 1000

Figure 6b displays the feature visualization results for high, medium, and low con-
centrations of prochloraz. It can be observed that the activation values in the 1600-1800
nm band tend towards zero, indicating minimal contribution to the model’s decision-
making process in this band. In other bands, the differences in features across prochloraz
concentrations are pronounced, except for the lower concentration, which shows slightly
higher peaks near 1050 nm, 1400 nm, and 1500 nm compared to medium and high con-
centrations. Generally, the peak values of prochloraz features decrease with decreasing
concentration.

Figure 6c shows the feature visualization results for difenoconazole. Overall, the fea-
ture peaks decrease as the concentration lowers. The distinction in features between high
concentration and medium/low concentrations is most apparent near 550 nm; at 1375 nm,
the differences between high/medium and low concentrations are most distinct; near 1865
nm, the difference between high concentration and medium/low concentrations is also
clearly visible.

Figure 6d presents the feature visualization results for cypermethrin. In the 1500—
1800 nm band, the activation values tend towards zero, suggesting that the features within
this band are similar and contribute minimally to the model’s decision-making. Overall,
the feature peaks of cypermethrin decrease with decreasing concentration. Notably, near
750 nm, the feature peaks are highest for the low concentration, followed by the high con-
centration, which may be caused by instrumental errors, environmental differences, sam-
ple variability, or the chemical characteristics of the pesticide, necessitating further anal-
ysis.

Overall, the extracted features from the convolutional layers, whether differences be-
tween pesticides or among concentrations within a pesticide are pronounced in the model,
contribute to an overall accuracy of 0.97. However, further model adjustments might be
necessary for data with slightly lower metrics.

4. Conclusions

This study introduced a novel approach integrating handheld spectroscopy and deep
learning, achieving 97% accuracy in detecting pesticide residues on kumquat surfaces.
This method enables the rapid, field-based, and non-destructive detection of various pes-
ticides and their concentration gradients by directly inputting standardized spectral data
into the 1D-ResNet model, simplifying feature extraction and improving both efficiency
and applicability.
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Experimental results confirm the approach’s reliability and effectiveness, with a
macro average of 0.96 indicating balanced performance across categories, and a weighted
average of 0.97 reflecting strong performance in categories with larger sample sizes. While
accuracy is slightly lower for detecting 1 mg/L prochloraz and 50 mg/L difenoconazole,
the model excels in other pesticides and concentrations, with precision, recall, and F1-
scores approaching or exceeding 1.00. Additionally, feature extraction and visualization
from the convolutional layers of the 1D-ResNet model have provided valuable insights
into its decision-making process, enhancing model interpretability and serving as a foun-
dation for future quantitative analysis of pesticide residues.

Future work will focus on improving the model’s generalization for low-concentra-
tion pesticide detection, particularly for 1 mg/L prochloraz and 50 mg/L difenoconazole,
by expanding the training dataset, applying advanced data augmentation, and fine-tun-
ing the model. We also plan to develop a real-time system that reads data from the
handheld spectrometer and automatically processes the data for immediate detection re-
sults, streamlining data flow and enabling rapid, precise detection. Furthermore, a class-
incremental learning strategy will be implemented to introduce new pesticide residue cat-
egories while retaining the model’s ability to differentiate older ones, enhancing its flexi-
bility and long-term applicability. These advancements will improve detection efficiency
and provide better support for the safety monitoring of specialty crops like kumquats.
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