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ABSTRACT 
 

Induction motors are critical components in submarine systems, powering propulsion and auxiliary 
machinery under challenging operational conditions. These motors, however, are susceptible to 
faults such as voltage disturbances and mechanical anomalies that can compromise performance 
and operational safety. This research investigates the fault adaptation mechanisms for induction 
motors in submarine scenarios by integrating wavelet decomposition for fault detection and 
undervoltage relays for fault adaptation and mitigation. Wavelet transform analysis is employed to 
detect transient faults, specifically voltage disturbances occurring between 0.3 and 0.7 seconds. 
The system identifies fault characteristics in real-time using the high-resolution capabilities of 
discrete wavelet transforms, allowing precise localization and classification of anomalies. An 
undervoltage relay, integrated into the system, adapts to the fault condition by tripping the motor at 
0.54 seconds to prevent prolonged exposure to damaging voltage dips. The study utilizes 
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MATLAB/Simulink to model and analyze a 7.5 kW, 400 V, 1440 RPM induction motor operating 
under realistic submarine conditions. For fault identifications, twelve different scenarios are 
examined: Three phase to ground fault, three phase fault, double line to ground fault (AB-G), double 
line to ground fault (AC-G), double line to ground fault (BC-G), line to line fault (A-B), line to line 
fault (A-C), line to line (B-B) fault, single line to ground fault (A-G), single line to ground fault (B-G), 
single line to ground fault (C-G), and no faults. Also, for fault adaptation using under-voltage relay, 
two different scenarios are simulated for reference purpose: single line to ground and three phase 
to ground. Simulation results demonstrate the effectiveness of the wavelet-based detection in 
identifying faults early and the relay's timely intervention to protect the motor. These findings 
highlight the viability of integrating wavelet decomposition and adaptive relay mechanisms to 
enhance the resilience of induction motors in submarines.  
 

 

Keywords: Induction motors; wavelet; faults detection; undervoltage relays; simulation. 

 
1. INTRODUCTION 
  

Induction motors are vital components of 
submarine propulsion systems and auxiliary 
machinery due to their robustness, efficiency, 
and reliability (Thongam et al. 2013, Liang 2019, 
Bassham 2003). However, these motors operate 
in highly challenging environments, including 
high-pressure conditions, limited cooling 
capabilities, and variable loads, which can 
increase their susceptibility to faults such as rotor 
bar damage, bearing failures, and insulation 
breakdowns. Adapting to and mitigating such 
faults is critical to ensure uninterrupted 
submarine operations, especially given the 
limited accessibility for repairs during missions 
(Schauder 1989). 
 

Fault dictation and adaptation in induction motors 
within submarines involves the integration of 
advanced diagnostic and predictive maintenance 
systems (Bindi et al. 2023). For instance, 
(Delgado-Arredondo et al. 2017) propose a 
methodology for detecting faults in induction 
motors in steady-state operation based on the 
analysis of acoustic sound and vibration signals. 
(Gangsar & Tiwari 2020, Udoh et al. 2024, 
Abunike et al. 2021) uses signal-based condition 
monitoring techniques for fault detection and 
diagnosis of induction motors. Induction Motors 
Fault Diagnosis Using Finite Element Method 
was carried out in (Liang et al. 2019, Faiz et al. 
2009). The use of artificial intelligence methods 
for condition monitoring and fault diagnosis of 
rolling element bearings for induction motor was 
propose in (AlShorman et al. 2020, Nkan et al. 
2023). Similarly, (Kim et al. 2023, Okoro et al. 
2022) further advance to induction motor fault 
diagnosis using support vector machine, neural 
networks, and boosting methods. 
 

Traditional approaches like preventive 
maintenance often fall short in addressing 

unforeseen faults or operational stresses, leading 
to unexpected downtimes. Modern 
methodologies leverage condition monitoring 
systems that analyze parameters like vibration, 
temperature, and current signatures in real-time. 
For instance, motor current signature analysis 
(MCSA) is widely used to detect anomalies by 
identifying characteristic frequency components 
associated with specific faults (Bhole & Ghodke 
2021, Mehala & Dahiya 2007, Sakhalkar & Korde 
2017, Kalaskar & Gond 2014, Rafaq et al. 2020, 
Sonje & Munje 2012). Similarly, Wavelet 
transform has emerged as a promising solution 
for fault detection in induction motors due to its 
ability to decompose signals into time-frequency 
domains, enabling precise detection of transient 
and localized disturbances. Studies in (Bessous 
et al. 2018, Siddiqui & Giri 2012) propose a 
diagnosis of bearing defects in induction motors 
using discrete wavelet transform. Similarly, 
(Jimenez et al. 2007, Diji et al. 2013, Sunday et 
al. 2024) advance to fault detection in induction 
motors using Hilbert and Wavelet transforms. 
However, its application in submarine-specific 
induction motor fault detection remains 
underexplored. Current research lacks 
frameworks tailored to address voltage 
disturbances and non-stationary signal patterns 
arising from the unique operational demands of 
submarines. 
 
In recent years, artificial intelligence (AI) and 
machine learning (ML) have further 
revolutionized fault diagnosis and adaptation. 
Techniques such as autoencoders, neural 
networks, and decision-support systems have 
been employed to model non-linear relationships 
in motor operations and distinguish between 
normal and fault conditions with high accuracy. 
These frameworks allow for the early detection of 
faults, enabling submarines to transition from 
reactive repairs to predictive maintenance 
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strategies, which reduce operational risks and 
extend equipment lifespans. 
 
Previous studies have explored the use of 
autoencoders in various applications, including 
an LSTM autoencoder for real-time pipeline leak 
detection using accelerometer signals and a 
framework for the identification of corrosion in 
hydropower facilities, achieving over 80% true 
positive detection (Spandonidis et al. 2022, Fera 
& Spandonidis 2024, Ekpo 2012). Recent studies 
have shown that autoencoders effectively identify 
damage in electric motors. A comparative 
analysis found that MLP autoencoders 
outperformed MLP, CNN, and LSTM 
architectures in detecting damage from vibration 
signals, achieving an AUC of 99.11% (Okpo et 
al. 2020, Okpo et al. 2023, Etim et al. 2024, Nkan 
& Okpo 2016). Additionally, research developed 
a hybrid health indicator using current and 
vibration signals to monitor bearings and stator 
windings in motors, demonstrating excellent 
performance across various load conditions 
(Husebø et al. 2020). CNN autoencoders were 
also used for the rapid identification of electrical 
damage in induction motors, achieving over 95% 
accuracy. Research carried out in (Riveiro et al. 
2018, Bassey et al. 2024) shows the 
unsupervised methodology which proved to be 
an advantageous in sectors such as maritime, 
where instances of, damage data are frequently 
limited.  
 
Digital twin technologies are also being 
integrated into submarine systems to simulate 
real-time operational conditions of induction 
motors (Madusanka et al. 2023, Okpo et al. 
2019, Diji et al. 2013, Olatunbosun et al. 2014). 
These virtual replicas enable engineers to test 
fault scenarios and implement adaptive controls 
without risking actual hardware. Such 
technologies provide significant insights into 
system performance under varying conditions, 
aiding in the development of more resilient 
systems. 
 
Despite these advancements, there are 
challenges in implementing fault adaptation 
systems in submarines. These include the need 
for high-fidelity sensors, data storage limitations, 
and computational constraints in confined 
spaces. Overcoming these barriers requires 
continued research into lightweight and efficient 
diagnostic tools tailored for maritime applications. 
 
 

To bridge these gaps, this research work focuses 
on development of robust fault detection and 
protection framework for induction motors in 
submarine applications by integrating wavelet-
based signal analysis and undervoltage relay 
mechanisms, ensuring early detection, accurate 
diagnosis, and timely mitigation of faults under 
challenging operational conditions. The study 
also focuses on enhancing motor reliability and 
operational continuity while addressing the 
specific challenges of non-stationary fault signals 
and voltage disturbances unique to submarine 
environments. 
 

This paper is organized as follows. Section 2 
outlines the overall methodology of wavelet-
based signal analysis and undervoltage relay 
mechanisms. Section 3 details the simulation 
model for the motor, while Section 4 presents the 
validation results of the model. Section 5 
concludes with the key findings of the research. 
 

2. SIGNAL ANALYSIS METHOD—
WAVELET TRANSFORM (WT) 
 

The detection components installed in the motor, 
such as acceleration transducer, bearing 
resistance temperature detector (RTD), winding 
temperature sensor in the stator slot, partial 
discharge couplers, etc., can immediately control 
the running status of the unit and can 
immediately shut down for maintenance when 
the motor is abnormal. In the past, when the 
motor fails, experienced equipment maintenance 
engineers must make preliminary judgments 
before repairing the motor. The motor is often 
affected by the harsh operating environment and 
the noise interference, which makes 
maintenance engineers misjudge. Therefore, in 
recent years, there have been many signal 
analysis studies on the fault detection of 
electrical machinery. Common methods include 
fast Fourier transform by frequency and energy, 
and wavelet transform by frequency, energy, and 
time, as a reference for maintenance engineers 
to determine the types of failure. 
 
Wavelet transform (WT) uses a mother wavelet 
to do the proper translation and scaling to match 
the signal which will be decomposed. The theory 
is extended from Fourier transform and it has the 
capability of multiple resolution analysis (Nichoga 
et al. 2010). WT can be divided into continuous 
wavelet transform (CWT) and discrete wavelet 
transform (DWT). 
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2.1 Continuous Wavelet  
 

WT uses the oscillating waveform of a mother 
wavelet with finite length or fast attenuation to 
represent the signal. The mother wavelet has the 
following characteristics:  
 

1. The integral is zero 
 

∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞
                                            (1) 

 

2. Limited energy 
 

∫ |𝜓(𝑡)|2𝑑𝑡 < ∞
∞

−∞
                                       (2) 

 

Compared to the Fourier transform, CWT can 
construct the time–frequency signal. CWT lets 
any function f(t) expanded by mother wavelet 
ψ(t), which is composed of a scaling function and 
displacement function, shown in (3), and CWT is 
shown in (4). 
 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
)                                    (3)  

 

𝐶𝑊𝑇𝑎,𝑏 = ∫ 𝑓(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡
∞

−∞
                       (4) 

 

where a is the scaling function, b is the 

displacement function, and 
1

√𝑎
 is the 

normalization factor. 
 

2.1.1 Discrete wavelet transform  
 

DWT is used to discretize the scaling function a 
and displacement function b of the mother 
wavelet, that is, it is limited to a regularly 
distributed discrete point, thereby reducing the 
complexity of CWT. Therefore, making (4) 
discretize, and letting a = a0m, b = a0mb0, t = 𝑘𝑇, 
where k, m, and n are all integers, T is defined as 
a time unit, and it will get the DWT, shown in (5). 
To consider the conversion efficiency, a0 = 2 and 
b0 = 1 are usually chosen, which is a dyadic 
orthonormal wavelet transform. 
 

𝐷𝑊𝑇(𝑚,𝑛) =
1

√𝑎0
𝑚 ∑ 𝑓(𝑘)𝜓 (

𝑘−𝑛𝑎0𝑚𝑏0

𝑎0𝑚 )𝑘          (5) 
 

2.1.2 Multiple resolution analysis  
 

Multiple resolution analysis (MRA) was proposed 
by Mallat (Huang et al. 2006). The equation is 
shown in (6). MRA decomposes the original 
signal into detail coefficients and approximation 
coefficients with a scaling function φ(t) and 
wavelet function ψ(t), shown in (7) and (8), and 
then reconstructed in different resolution layers, 
where the scaling function can be regarded as a 
low-pass filter, and the wavelet function can be 
regarded as a high-pass filter. 
 

𝑓(𝑡) = ∑ 𝐶𝑘𝜙𝑘(𝑡) + ∑ ∑ 𝑑𝑗,𝑘𝑘𝑗𝑘 𝜓𝑗,𝑘(𝑡)         (6) 

 

𝜙(𝑡) = √2 ∑ ℎ(𝑘)𝜙𝑘(2𝑡 − 𝑘)𝑘                       (7) 
 

𝜓(𝑡) = √2 ∑ 𝑔(𝑘)𝜙𝑘(2𝑡 − 𝑘)𝑘                      (8) 
 

where h(k) and g(k) are low-pass and high-pass 
filter coefficients, respectively. The schematic 
diagram of MRA is shown in Fig. 1, where 
𝑑𝑗 𝑎𝑛𝑑 𝑎𝑗  are the detail coefficient and 
approximate coefficient, and↓2 means the 
bandwidth sampling rate is halved. 
 

2.2 Wavelet Decomposition Algorithm 
 

A wavelet is a mathematical function used to 
decompose a signal into components of different 
frequency bands while retaining time information. 
Unlike Fourier transform, which only analyzes 
signals in the frequency domain, wavelet 
transform provides a time-frequency 
representation, making it ideal for analyzing non-
stationary signals. Faults in induction motors 
submarine produce transient signals, such as 
sudden changes in current or voltage.                  
Wavelets effectively detect these changes due  
to their localized nature in both time and 
frequency. 

 
 

Fig. 1. Schematic diagram of multiple resolution analysis (MRA) (Lee & Cheng 2020)  
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The proposed fault detection algorithm leverages 
in this research work are wavelet transforms 
which will enable us to analyze the transient 
characteristics of current signals from the three-
phase induction motor. Using the Daubechies 
wavelet (db4), this algorithm decomposes phase 
and ground current signals into detail coefficients 
that capture high-frequency transients caused by 
faults. By computing the maximum coefficients 
and comparing them to a predefined threshold, 
the algorithm effectively identifies and classifies 

faults such as single-line-to-ground, line-to-line, 
and three-phase faults. A flowchart 
representation of the algorithm demonstrates its 
logical structure, and its performance is validated 
through simulations of various fault conditions in 
MATLAB/Simulink. The results confirm the 
algorithm's accuracy and robustness, making it a 
reliable tool for real-time motor protection. The 
flow chart of the wavelet decomposition algorithm 
is shown in Fig. 2. 

 

 
 

Fig. 2. Flow chart of wavelet decomposition algorithm 
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3. SIMULATION TEST CASE 
 

The framework proposed in this research work is 
to evaluate whether the wavelet decomposition 
can detect stator winding damage in induction 
motors. In practice, the experimental analysis of 
electromechanical systems under normal and 
damaged operation conditions is not always 
possible due to the need to damage the 
equipment. To address the above-mentioned 
problem, a 3-phase low-voltage squirrel-cage 
motor is simulated using MATLAB Simulink. The 
simulation model utilized a 7.5 kW, 3-phase 
squirrel-cage induction motor (IM) and a fault 
block to replicate faulty operations. Fig. 3 
displays the finalized model, while Table 1 
outlines the key components, including the IM 
and fault block. 
 

The selection of the 3-phase squirrel-cage motor 
is based on its extensive use in various 
electromechanical systems, including maritime 
applications. The model is developed to simulate 
the operation of the induction motor alongside a 
fault block specifically inject fault to the induction 
motor. The detailed specifications of the 
induction motor are outlined in Table 1, while Fig. 
3, illustrates the simulation setup within the 
MATLAB workspace. The focus of the fault 
analysis is on the stator winding during a short-
circuit event. The Simulink 3-phase fault block is 
capable of simulating two types of faults: phase-
to-phase and phase-to-ground short circuits. 
Specifically, for fault detection and identification, 
twelve different scenarios are examined: Three 
phase to ground fault, three phase fault, double 
line to ground fault (AB-G), double line to ground 
fault (AC-G), double line to ground fault (BC-G), 
line to line fault (A-B), line to line fault (A-C), line 

to line (B-B) fault, single line to ground fault (A-
G), single line to ground fault (B-G), single line to 
ground fault (C-G), and no faults. Also, for fault 
adaptation using under-voltage relay, two 
different scenarios are simulated for reference 
purpose: single line to ground and three phase to 
ground. Additionally, the level of damage, 
indicated by the resistance, is a crucial factor. 
The literature (Zoeller et al. 2017, Chaves& 
Oswaldo 2012) suggests that lower resistance 
indicates a severe insulation failure, representing 
a complete interturn short circuit, whereas higher 
resistance can produce similar malfunctions that 
are more challenging to detect.  
 
The simulation is conducted over 1 s, utilizing a 
sampling of 0.2 𝑝. 𝑢 voltage drop to capture the 
speed and torque of the induction motor as 
applicable to maritime sector. The choice of a 
20% undervoltage variation for fault simulation in 
this study is grounded in its practical relevance to 
real-world operational scenarios and its ability to 
effectively replicate common faults in induction 
motor applications, particularly in demanding 
environments like submarines. In many cases, 
voltage drops of 10%–20% are used to simulate 
moderate to severe undervoltage conditions that 
can significantly affect motor performance. 
Severe voltage drops would result in more 
dramatic motor performance issues, such as 
significant torque reductions, motor stalling, or 
even insulation failure. While the faults are easier 
to detect, the system’s ability to adapt to such 
severe conditions might be compromised, 
possibly resulting in irreparable damage before 
the protection mechanisms engage.  The relay 
would trip faster, and the wavelet analysis would 
show more intense and frequent transients.  

 
Table 1. Motor simulation details and specs 

 

Number   Parameters  Value  

1 Input power of the motor 7.5Kw 
2 Motor input voltage  400V 
3 Frequency  50Hz 
4 Motor speed 1440 RPM 
5 Mechanical power 7.5Kw 
6 Stator resistance  0.7384𝛺 
7 Stator inductance  0.003045 𝑚𝐻 
8 Rotor resistance 0.7402𝛺 
9 Rotor inductance  0.003045 𝑚𝐻 
10 Mutual inductance  0.1241H 
11 Inertia(J)  0.0343 (kg.m2) 
12 Friction factor(F) 0.000503 (𝑁. 𝑚. 𝑠) 
13 Number of pole pair 4 
14 Initial condition 10000000 
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Fig. 3. Simulation setup as represented in MATLAB’s workspace 
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4. NO FAULT ANALYSIS  
 
For an induction machine supplied directly with 
the motor rated voltage, we can visualize the 
rotor speed, electromagnetic torque in Fig. 4. 
 
As seen in Fig. 4. a, we have a normal transient 
state at the rotor speed; the speed start from 
zero (0 RPM) and move to the motor rated speed 
which is about 1440 (RPM) and maintain a stable 
output waveform without any distortion in the 
speed. As seen in Fig. 4. b, we have a normal 
transient state at the electromagnetic torque; 
however, at start, the electromagnetic torque 
experiences an increase of 2 to 2.5 the rated 
torque before it stable at 0.1 seconds and 
maintain a stable transient state till 1 second 
without any distortion. 
  

4.1 Single Line to Ground (A-G) with 20% 
Under-Voltage Variation  

 

Single line to ground fault (A-G) with 20% under-
voltage variation introduces an unbalanced 
condition, they by impacting the motor's 
performance and causing asymmetric magnetic 
flux in the stator, which in turn affects the rotor 
speed, electromagnetic torque. In other for the 
induction motor to adapt to the fault, an under-
voltage relay is connected to the motor to 
disconnect it from the supply. Fig. 5a, and 5b 
present the simulation result with 20% under-
voltage variation and Fig. 5c, and 5d shown the 
adaptation simulation result. 
 

As seen in Fig. 5a, the voltage drops in a single 
phase cause the rotor speed to experiences a 
slight reduction and distortion in the output 
waveform. The fault occurs at 0.3 second till 0.7 
seconds, this weakens the overall magnetic field 
strength, causing the motor to lose some 
synchronism and slip slightly more than it would 
under balanced conditions.   
 

As seen in Fig. 5b, electromagnetic torque 
becomes uneven and less stable leading to 
fluctuation and vibrations in the torque.  
 

It can be seen in Fig. 5c, and 5d how the relay 
trip at 0.54 seconds, they by adapting to the fault 
scenarios also protecting the motor from 
damage. 
 

4.2 Three phase to ground fault with 20% 
Under-Voltage Variation 

 

The fault in this scenario occurs simultaneously 
across all three phases to ground representing a 

balanced but reduced voltage condition, this 
affects the motor performance differently than 
single-phase voltage drops. The system is 
analyzed up to the 0.54-second mark, when the 
under-voltage relay adapts to the fault by 
disconnecting the motor. 
 
As seen in Fig. 6a the fault occurs across all 
three phases, this causes the rotor speed 
decrease but remains relatively stable compared 
to single-phase faults. Since the voltage 
reduction is balanced, the motor experiences 
less fluctuation in speed and can maintain a 
controlled, albeit lower, speed.  
 
As seen in Fig. 6b the torque reduction is more 
uniform but lacks the severe oscillations seen in 
single-phase faults, as all three phases 
contribute equally to torque production.  
However, the torque output is insufficient to fully 
meet the load demand due to the lower power 
input, causing a steady but diminished torque 
level.   
 
It can be seen in Fig. 6c, and 6d, how the motor 
adapts to the fault upon relay activation at 0.54 
seconds by disconnecting it from the power 
supply they by bringing its rotor speed and 
torque to zero. 
 

4.3 Wavelet Fault Identification Analysis 
 
For fault identification analysis with wavelet, the 
selection of the Daubechies wavelet (db4) in this 
research was primarily motivated by its superior 
ability to capture transient, non-stationary 
signals, which are typical of fault-induced 
disturbances in induction motors. Table 2 present 
the specific reasons and comparative 
justifications for choosing db4 over other 
wavelets: 
 
The maximum value of detailed coefficients of all 
the phases and ground voltage for different fault 
identification using wavelet decomposition 
algorithm are presented in Table 3. 
 
Table 3 already summarizes the wavelet 
coefficients effectively, providing insights into the 
signal decomposition across different levels. For 
the simulated 20% undervoltage, detection times 
cluster around 0.3 to 0.7 seconds, with distinct 
deviations in both high- and low-frequency 
wavelet coefficients. This detection time vary 
slightly depending on the duration of the fault and 
waveform characteristics.  
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(a)                                                                                                              (b) 
 

Fig. 4. (a) Rotor speed simulation result at no fault. (b) Electromagnetic torque simulation result at no fault 
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(a)                                                                                                                     (b) 

  

(c)                                                                                                                                       (d) 
 

Fig. 5. (a) Rotor speed simulation result at single line to ground fault. (b) Electromagnetic torque simulation result at single line to ground fault.  
(c) Rotor speed simulation result at single line to ground fault with relay. (d) Electromagnetic torque simulation result at single line to ground fault 

with relay 



 
 
 
 

Enefiok et al.; J. Eng. Res. Rep., vol. 26, no. 12, pp. 286-304, 2024; Article no.JERR.128499 
 
 

 
296 

 

  
(a)                                                                                                        (b) 

  

(c)                                                                                                               (d) 
 

Fig. 6. (a) Rotor speed simulation result at three lines to ground fault. (b) E lectromagnetic torque simulation result at three lines to ground fault. 
(c) Rotor speed simulation result at three lines to ground fault with relay. (d) Electromagnetic torque simulation result at three lines to ground fault 

with relay 
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Table 2. Comparative analysis of daubechies wavelet and other wavelet 
 

Wavelet Type Strengths  Weaknesses Comparative Notes 

Haar  Simple, fast, good for step-like signals Poor frequency resolution Unsuitable for smooth, transient signals 
Symlet (sym4)  Symmetry, good for image processing Higher computational complexity Similar to db4 but less efficient for faults 
Coiflet (coif4)  Good frequency localization Higher computational requirements db4 offers similar results with lower effort 
Morlet/Mexican Hat Excellent frequency analysis, continuous wavelet Computationally intensive, not discrete Overkill for motor fault analysis 
Daubechies (db4) Balanced time-frequency, localized, robust for 

faults 
Slightly less intuitive interpretation Optimal for transient signal fault detection 

 
Table 3. Maximum coefficients for different fault identification using daubechies wavelet decomposition algorithm 

 

Type of Fault Max. coefficient of phase A    
current 

Max. coefficient of phase B    
current 

Max. coefficient of phase C    
current 

Max. coefficient of Ground 
B    current 

Three phase to ground fault 1.6097e+07 1.6025e+07 1.6097e+07 1.6024e+07 
Three phase faults 1.6097e+07 1.6025e+07 1.6097e+07 0.0094 
Double line to ground (AB-G) 1.0796e+07 1.1332e+07 119.5264 1.2652e+07 
Double line to ground (AC-G) 1.9807e+07 135.5646 1.9739e+07 1.9393e+07 
Double line to ground (BC-G) 103.9857 1.1725e+07 1.1478e+07 1.1619e+07 
Line to line (AB) 1.0802e+07   1.0363e+07 119.5264 0.0094 
Line to line (AC) 1.3363e+07 135.5620 1.3443e+07 0.0204 
Line to line (BC) 103.9857 1.0725e+07 1.0847e+07 0.0051 
Single line to ground (A-G) 1.3523e+07  103.9844 119.5264 1.4187e+07 
Single line to ground (B-G) 103.9857 1.1024e+07 119.5264 1.1253e+07 
Single line to ground (C-G) 103.9857 103.9844 1.4099e+07 1.5023e+07 
No faults 103.9857 103.9844 104.9264 104.9355 
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(a)                                                                                                                (b) 

  
(c)                                                                                                               (d) 

  
Fig. 7. (a) three phase to ground fault. (b) three phase fault (c) phase A-B to ground fault. (d) phase A-C to ground fault 



 
 
 
 

Enefiok et al.; J. Eng. Res. Rep., vol. 26, no. 12, pp. 286-304, 2024; Article no.JERR.128499 
 
 

 
299 

 

  
(a)                                                                                                      (b) 

  
(b)                                                                                                     (d) 

 
Fig. 8. (a) phase B-C to ground fault. (b) line A-B fault (c) line A-C fault. (d) line B-C to fault 
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(a)                                                                                                      (b) 

  
(b)                                                                                                             (d) 

 

Fig. 9. (a) phase A to ground fault. (b) phase B to ground fault (c) phase C fault to ground fault. (d) no fault
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As seen in Fig. 7a, when the fault occurs in all 
the three phases to ground, the coefficient in all 
the three phases to ground are very high. 
 

As seen in Fig. 7b, when the fault occurs in three 
phases only, the coefficient in phase A, B, C are 
very high while ground coefficient is low. 
 

As seen in Fig. 7c, when the fault occurs in line 
A-B to ground, the coefficient in phase A-B, and 
ground are very high while phase C coefficient is 
low. 
 

It can be seen in Fig. 7d, when the fault occurs in 
line A-C to ground, the coefficient in phase A-C, 
and ground are very high while phase B 
coefficient is low. 
  

As seen in Fig. 8a, when the fault occurs in 
phase B-C to ground, the coefficient in phase B-
C to ground are very high while phase A 
coefficient is low. 
 

As seen in Fig. 8b, when the fault occurs in 
phase A and B, the coefficient in phase A-B is 
very high while phase C and ground coefficients 
are low. 
 

As seen in Fig. 8c, when the fault occurs in line 
A-C, the coefficient in phase A-C, are very high 
while phase B and ground coefficients are low. 
 

It can be seen in Fig. 8d, when the fault occurs in 
line B-C, the coefficient in phase B-C is very high 
while phase A and ground coefficients are low. 
 

As seen in Fig. 9a, when the fault occurs in 
phase A to ground, the coefficient in phase A to 
ground are very high while phase B and C 
coefficient is low. 
 

As seen in Fig. 9b, when the fault occurs in 
phase B to ground, the coefficient in phase B to 
ground are very high while phase A and C 
coefficients is low. 
 

As seen in Fig. 9c, when the fault occurs in 
phase C to ground, the coefficient in phase C to 
ground are very high while phase A and B 
coefficients is low. 
 
It can be seen in Fig. 9d, when no fault occurs in 
the system, all the phase to ground coefficient 
are normal and equal.  
 

5. CONCLUSION 
 
This research successfully integrates wavelet 
decomposition and undervoltage relay 

mechanisms to develop a robust fault detection 
and protection framework for induction motors, 
specifically addressing the unique challenges of 
submarine environments. The proposed 
approach leverages the ability of wavelet 
transform analysis to detect transient, non-
stationary faults with high precision, ensuring 
early diagnosis of critical issues like voltage 
disturbances. Additionally, the undervoltage 
relay's adaptive functionality ensures timely 
motor protection, tripping at a critical threshold of 
0.54 seconds to prevent prolonged damage and 
operational failures. 
 
The MATLAB/Simulink-based simulation of a 7.5 
kW, 400 V, 1440 RPM induction motor validates 
the effectiveness of this methodology under 
demanding operational conditions. Results 
demonstrate that this approach significantly 
minimizes downtime, enhances motor reliability, 
and extends the operational lifespan of induction 
motors. Such improvements are especially 
critical for submarine applications, where 
operational continuity is paramount, and access 
for maintenance and repairs is limited. 
 
Despite the widespread adoption of induction 
motors in submarine systems, existing fault 
detection methods, such as motor current 
signature analysis (MCSA) and vibration-based 
monitoring, often fall short in addressing transient 
and localized disturbances in the highly variable 
conditions of submarine environments. By 
addressing these limitations, this study                        
bridges a critical gap in current research                   
and offers a tailored solution for the fault 
detection and protection of induction motors in 
submarines. 
 
The findings justify the adoption of wavelet-
based signal analysis and undervoltage relay 
mechanisms as a practical and effective 
approach for improving fault tolerance and 
operational resilience in marine applications. This 
framework provides a foundation for future 
advancements in marine fault management 
systems, paving the way for more                
reliable, efficient, and adaptive submarine 
operations. 
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