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Abstract 

 
In survey sampling, the use of auxiliary information to enhance estimators of population parameters under 

simple random sampling stratified random sampling and systematic sampling has been widely discussed. 

Similarly, some existing estimators were modified using regression imputation approach to obtain two 

imputation schemes and estimators that impute the responses non-respondents thereby eliminating difficulties 

in data presentation, compilation. The theoretical properties (estimators, biases and mean squared errors) of 

the proposed imputation scheme were derived so as to assess their robustness and efficiency. The theoretical 

findings were supported by simulation studies on population generated using four distributions namely; Beta, 

Gamma, Exponential and Uniform distributions. The averages of biases, MSEs and PREs of the estimators in 
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comparison to the existing estimators were computed from the simulated data and the results showed that on 

average, the estimators of the proposed imputation scheme have minimum biases, minimum MSEs and higher 

PREs compared to the traditional unbiased estimators. These results imply that the estimators of the proposed 

schemes are more efficient and robust than the conventional unbiased estimators. 

 

 

Keywords: Estimator; efficiency; robustness; distributions; systematic sampling. 

 

1 Introduction 

 
The use of auxiliary information to enhance estimators of population parameters under simple random sampling 

stratified random sampling and systematic sampling has been widely discussed. Cochran (1940) used “auxiliary 

information at estimation stage and suggested a ratio estimator. The ratio estimator is more efficient when study 

and auxiliary variates are positively correlated and regression line passes through the origin”. In case of negative 

correlation, Robson (1957) developed “product method of estimation that provides a product estimator which is 

more efficient than the simple mean estimator”. Hansen et al. (1946) developed “a combined ratio estimator in 

stratified sampling. In systematic sampling”, Swain (1964) defined “a ratio estimator whereas Shukla (1971) 

suggested a product estimator. Many authors including Kushwaha and Singh (1989), Singh and Singh (1998) 

and Singh and Solanki (2012) discussed various estimators of population mean. Singh et al. (2011) suggested “a 

general family of estimators for estimating population mean in systematic sampling using auxiliary information 

in the presence of missing observations”. Singh and Jatwa (2012) suggested “a class of exponential-type 

estimators in systematic sampling”. Singh et al. (2011) studied some modified ratio and product estimators for 

population mean in systematic sampling. Singh (1967) used “information on population means of two auxiliary 

variates and developed a ratio-cum-product estimator in simple random sampling”. Ayed et al. (2023) Suggested 

that “the efficiencies of the estimators of the population parameters of the study variable can be increased by the 

use of auxiliary information related to auxiliary variable x, which is highly correlated with the study variable y. 

Auxiliary information may be efficiently utilized either at planning stage or at design stage to arrive at an 

improved estimator compared to those estimators, not utilizing auxiliary information. A simple technique of 

utilizing the known information of the population parameters of the auxiliary variables is through ratio, product, 

and regression method of estimations using different probability sampling designs such as simple random 

sampling, stratified random sampling, cluster sampling, double sampling. In this study we consider auxiliary 

information under the frame work of systematic sampling”. 

 

Systematic sampling has gotten the attention of survey statisticians due to its simplicity of use (Azeem and 

Khan, 2021). Systematic sampling is even simpler than simple random sampling as only the first units (or the 

first few units) are selected randomly from the population. The remaining units are obtained according to a pre-

defined rule. First introduced by Madow and Madow (1944), many versions of systematic sampling have been 

developed by the researchers for use with different real-life situations. Madow and Madow (1944) introduced 

“the novel idea of selecting the units the population according to a pre-defined pattern, called systematic 

sampling”.  Madow and Madow (1944) proposed “method was only applicable to those circumstances where the 

size of the finite population is a constant multiple of the required sample size, thus limiting its usability”. To 

overcome this drawback, Lahiri (1951) introduced “a new method called circular systematic sampling design”. 

Later, Chang and Huang (2000) introduced a new modification of systematic random sampling which they 

called remainder systematic sampling which is also applicable in situations in which the size of a finite 

population is not a multiple of the sample size. Apart from its simplicity, systematic sampling provides 

estimators which are more efficient than simple random sampling or stratified random Sampling for certain 

types of population; see Cochran (1946), Gautschi (1957) and Hajeck (1959). Notable among them are Singh et 

al. (2011), Singh et al. (2012), Tailor et al. (2013), Khan et al. (2013), Subramani (2013), Verma et al. (2014), 

Verma and Singh (2014), Khan and Rajesh (2015), Noor-ul-Amin et al (2017), Azeem and Khan (2021), Zahoor 

et al. (2022), Ayed and Khan (2023), Azeem (2023). 

 

The diagonal systematic sampling procedure was first introduced by Subramani (2000) which was found to be 

more precise as compared to simple random sampling and linear systematic sampling methods in the presence 

of linear trend. Sampath and Varalakshmi (2008) introduced a new modified systematic sampling method called 

diagonal circular systematic sampling. Subramani (2009) introduced generalized version of diagonal systematic 

sampling method. Khan et al. (2014) suggested the conditions under which the Sampath and Varalakshmi 
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(2008) sampling scheme is applicable. Khan et al. (2015) proposed a generalized version of systematic 

sampling, and it was shown that diagonal systematic sampling scheme is a special case of the new generalized 

sampling scheme. Imputation is a statistical method used to replace missing data with estimated values.  Data 

obtained from sampling surveys often face the problem of non-response or missing values. These missing values 

create difficulty in analysis, processing and handling of data. The problem of non-response has been considered 

by many authors including Singh and Horn (2000), Singh and Deo (2003), Wang and Wang (2006), Kadilar and 

Cingi (2008),Audu et.al. In this paper, we intend proposing imputation schemes that impute responses for non-

respondents while using Subramani and Gupta (2014) estimators and to obtained new modified estimators for 

the schemes as well as their biases and mean square errors. 

 

1.1 Literature review 

 

Consider a finite population 
1 2, 3,
, ........

N
U U U U U=  of size N units. A sample of size n is taken at random 

from the first k   units  and every 
th

k subsequent unit then, N = nk  where  n and k  are positive integers thus, 

there will be k  samples each of size n and observe the study variable y and auxiliary variate x  for each and 

every unit selected in the sample. 

 

Let 
,

( )
ij ij

y x  for 1, 2...... ,i k= 1, 2.....j n=  indicate the value of 
th

j  unit in the 
th

i  sample and each value 

of 
,

( )
ij ij

y x  may be classify into two mutually exclusive classes, i.e. G and
'

G , where G refers to the class of 

interest. Let  

 

'

1

0

ij

ij

ij

if y G
y

if y G


= 



        (1.1)   

 

'

1

0

ij

ij

ij

if x G
x

if x G


= 



        (1.2)                    

  

Then, the systematic sample means are defined as follows: 

  

0 1
1 /

n

st ijj
y t n y

=
= =   and 0 1

1 /
n

st ijj
x t n x

=
= =   unbiased estimators of the population means 

 

1
1 /

n

ijj
Y n y

=
=  , and 

1
1 /

n

ijj
X n x

=
=   of y  and x  

 

To obtain estimators up to first order of approximation, using the following error terms: 

 

0 1 2
/ , / , /

sys sys sys
e y Y X e x X X e z z z= − = − = −

 
 

Subramani and Gupta (2014) proposed the modified systematic sampling scheme which is explained by the 

following step. 

 

1. Firstly arrange the N population units (labels) in a matrix with 
1 2

k k k= + columns and That is, the first 

2
n k  population units are arranged in row wise in the first 

2
n  rows with k elements each and the 

remaining ( )1 2 1
n n k−  population units are arranged row wise in the next ( )1 2

n n−  rows with k1 

elements each as in the arrangement. 

2. The first 
1

k  columns are assumed as Set 1 and the next 
2

k  columns are assumed are assumed at set 2 
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3. Select two random numbers, i  in between 1 and 
1

k   and j in between 1 and 
2

k  ,then select all the 
1

n  

units in the 
th

i  column of Set 1 and all the 
2

n   units in the 
th

j  column of Set 2, which together give the 

sample of size n . 

4. The step 3 leads to 
1 2

k k  samples of size n  

 

The arrangement of population unit of set-1 is given below: 

 

S.No 1 2 3 4 K 

1 1 . i  . k  

2 1k +  . k i+  . 
1

k k+  

3 2 1k +  . 2k i+  . 
1

2k k+  

4 . . . . . 

5 . . . . . 

6 . . . . . 

7 ( )2

2

1 1

1

n k

n k

− +

+
 

. ( )2

2

1n k i

n k i

− +

+
 

. ( )2 1

2 1

1n k k

n k k

− +

+
 

8 
2 1

1n k k+ +  . 
2 1

n k k i+ +  . . 

9 . . . . . 

K ( )2 2 1 1
1 1n k n k+ − +  . ( )2 2 1 1

1n k n k i+ − +  . 
2 2 1 1

n k n k+  

 

The arrangement of population unit of set-2 is given below: 

 

S.No 1 2 3 4 K 

1 
1

1k +  . 
1

k j+  . 2k  

2 
1

1k k+ +  . 
1

k k j+ +  . 3k  

3 
1

2 1k k+ +  . 
1

2k k j+ +  . . 

4 . . . . . 

5 . . . . . 

6 . . . . . 

7 ( )2 1 1
1 1n k k− + +  . ( )2 1 1

1n k k j− + +  . 
2

n k  

 

1

2

1
1

1
2

th

i

th

if i unit is from the set
k

if i unit is from the set
k




−


= 
 −


 

1

2

1 2

1
,

1
, 2

1
, 1 2 ,

0, .

th th

th th

ij

th th

if i and j units are from the column of set I
k

if i and j units are from the column of set
k

if i and j units are from the column of sets and set respectively
k k

Otherwise




−




−
= 

 − −




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In general, for the given population size
1 1 2 2

N n k n k= + , the selected generalized modified linear systematic 

samples (labels of the population units) for the random starts i  and j  are given below: 

 

( ) ( )

( ) ( )

2 2 2 1 2 1 2 1

1 1 1 2 1 2

, , 2 ,...., 1 , , ,...., 1 ,

, ,...., 1 1, 2,..., 1, 2,3,....,
ij

i i k i k i n k i n k i n k k i n k n n k
S

j k j k k j k n k i k and j k

+ + + − + + + + + − −
= 

+ + + + + − = =

 (1.3) 

 

1.2 Estimator of population mean in diagonal systematic sapling and its properties 

 
The generalized modified linear systematic sample mean based on the random starts i  and j  is show below as  

 

2 1 2 2

2 1 1

1 1 1

1 2

0 0 0

1
1, 2,... 1, 2,3,....

n n n n

gmlss i kl i n k k l j k kl

i i j

y y y y for i k and j k
n

− − − −

+ + + + +

= = =

 
= + + = = 

 
   (1.4) 

 

Since the first order inclusion probabilities are not equal, the generalized modified linear systematic sample 

mean given above in (1.4) is not an unbiased estimator. The mean squared error of the GMLSS mean can be 

obtained from (1.5) as given below 

 

( ) ( )
1 2 2

1 11 2

1
k k

gmlss ij

i j

MSE y y Y
k k = =

= −        (1.5) 

 

2 Materials and Method 

 

Let consider ( ),y x  
+

 be pair of the study associated auxiliary measured on the studied population. Also 

let H denote the set of response with 
1

n units, 
c

H  denotes the set of non-responses having 
1

n n− units or 

missing units (out of n ) and S denotes the set of n units sampled without replacement from the N units in the 

population of interest. For each ,i H  the value of 
i

y  is observed. Likewise, for unit ,
c

i H is missing due 

to non-response and obtained using different procedure of imputation. 

 

2.1 First proposed imputation schemes and its estimator 

 
Motivated by Audu et al. (2021), the regression type imputation scheme for population mean based on diagonal 

systematic sampling design is proposed as in (1.6)  

 

( ) ( )

( )

( )
* *

*

.

1 2

1 2

ˆ

i

gmlss r gmls ri
c

gmlss r

y if i H

y X xy
M X M if i H

M x M










  + − =   
+

+


   (1.6) 

 

where,  

 

( ) ( )

* * * * * * * *
1 1 2 2 1 1 2 2

* *
2 1 1 2 1 1

1 1 1 1 1 1

* *

0 0 0 0

1 1
,

r r r r r r r r

i kl i n k k l j k kl i kl i n k k l j k klgmlss r gmlss r
i i o j i i o j

y y y y x x x x
r r

− − − − − − − −

+ + + + + + + + + +

= = = = = =

   
= + + = + +   

   
   
       
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

* *

* * * * * *
*

2
1 1

2 * * * 2 * *

,
1 1

ˆ / 1 , 1
x r

r r

i i iyx r x r yx r gmlss r gmlss r gmlss r
i i

s s s r y y x x s r x x
− −

= =

     
= = − − − = − −     

     
      

* * *

1 2
r r r= +

 
 

The estimator of the first proposed imputation can be obtained as in (1.7). 

 

( )
( )

* *

*

( ) ( )

1 1 2

1 2( )

ˆ
1

c

r n r
gmlss r gmlss r

i

i H i H gmlss r

y X x
t y M X M

n M x M

−

 

 + −
 = + +
 +
 

      (1.7) 

 

Simplify (1.7), (1.8) is obtained. 

 

( )( )
( )

* *

*

*

* *
( ) ( )

1 1 2( )

1 2( )

ˆ

1
gmlss r gmlss r

gmlss r

gmlss r

y X x
r r

t y M X M
n n M x M

+ − 
= + − + 

+ 
    (1.8) 

 

Express (1.7) in terms of error term defined in (1.6), (1.9) is obtained. 

 

( )
( )( )( )

( )
( )

* *
0 1

1 0 1 2

1 1 2

ˆ

1
Y Ye X X Xer r

t Y Ye M X M
n n M X Xe M

+ + − + 
= + + − + 

+ + 
                             (1.9)

  ( ) ( ) ( )
* *

1

1 0 0 1 1
ˆ1 1

r r
t Y Ye Y Ye Xe e

n n
 

− 
= + + − + − + 

 
                (1.10) 

where 
1

1 2

M X

M X M
 =

+
 

Simplify (1.10) up to first order approximation, (1.11) is obtained 

 

( )
*

2 2 2

1 0 1 1 0 1 1 1
ˆ ˆ1

r
t Y Ye Xe Ye Ye e Xe Y e

n
    

 
= + + − − − − + + 

 
              (1.11)

 
 

Subtract Y  from both side of (1.11), (1.12) is obtained. 

 

( ) ( )
* * *

2 2

1 0 1 1 0 1
ˆ ˆ1 1 1

r r r
t Y Ye X Y e X Y e Ye e

n n n
    

     
− = − − + + − + − −     

     
      (1.12) 

 

To obtain the bias of
1
t , take expectation (1.12). 

 

Since ( ) ( )0 1
0,E e E e= = ( ) ( )

2

2

0 0 12

1 1 1 1
,

y xy
S S

E e E e e
r N Y r N Y X

   
= − = −   
   

, the bias 
1
t  is obtain as in 

(1.13) 
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( ) ( )
*

2 2

1

1 1 ˆ1
r

Bias t X Y C x Y yxCyCx
n r N

   
     = − − + −       

              (1.13) 

To obtain the MSE of
1
t , square (1.13) and take expectation of the result, the MSE of 

1
t  is obtained as in (1.14). 

 

( ) ( ) ( )
2

* *
2

2 2 2

1

1 1 ˆ ˆ1 2 1
y x xy x y

r r
MSE t Y C X Y C Y X Y C C

r N n n
    

      
 = − + − + − − +     
         

(1.14) 

 

2.2 Second proposed imputation schemes and its estimator 

 
Motivated by Audu and Singh (2021), the regression type imputation scheme for population mean based on 

diagonal systematic sampling design is proposed as in (1.15)  

 

( ) ( )

( )

( )
( )

( )

* * *

* *

*

.

1 2 *

1 2

ˆ

exp

i

gmlss r gmlss ri gmlss r
c

gmlss r gmlss r

y if i H

y X x X xy
M X M if i H

M x M X x










  + −  − =     +
 + +
 

   (1.15) 

 

 The estimators of the second proposed imputation scheme can be expressed as in (1.16) 

 

( )
( )

* * *

* *

( ) ( ) ( )

2 1 2

1 2( ) ( )

ˆ
1

exp
c

r n r
gmlss r gmlss r gmlss r

i

i H i H gmlss r gmlss r

y X x X x
t y M X M

n M x M X x

−

 

 + −  −
 = + +  
 + +   

         (1.16) 

 

Simplify (1.16) and (1.17) is obtained. 

 

( )( )
( )

* * *

*

* *

*
( ) ( ) ( )

2 1 2( )

1 2( ) ( )

ˆ

1 exp
gmlss r gmlss r gmlss r

gmlss r

gmlss r gmlss r

y X x X xr r
t y M X M

n n M x M X x

+ −  − 
= + − +   

+ +    

(1.17) 

 

Express (1.17) in terms of error terms defined in (1.15), (1.18) is obtained.  

 

( )
( ) ( )( )( )

( )
( )

( )

( )

*
0 1 1

2 0 1 2

1 1 2 1

ˆ

1 exp
Y Ye X X Xe X X Xer r

t Y Ye M X M
n n M X Xe M X X Xe

+ + − +  − + 
= + + − +   

+ + + +    

  (1.18) 

 

Simplify (1.18) up to first order approximation, (1.19) is obtained. 

 

( ) ( )
2* * *

2 1 1

2 0 0 1 1 1

3ˆ1 1 1
2 8

e er r r
t Y Ye Y Ye Xe e e

n n n
  

  
= + + − + − − + − +   

   
             (1.19)

 
 

Subtract Y  up to first order approximation (1.19), (1.20) is obtained. 
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( )

*

2 0 1

* *

2 2

1 0 1

ˆ1
2

ˆ 3ˆ1 1
2 2 8

r Y
t Y Ye X Y e

n

r X Y Y r
X Y e Y Y e e

n n

 

 
  

   
− = + − − − −   

  

    
+ − + + + + + − − −     
    

            (1.20) 

 

To obtain the bias of
2

t , take expectation (1.20), the bias
2

t  is obtained as in (1.21). 

 

( ) ( )
*

2 2

2

ˆ1 1 3ˆ1
2 2 8

x xy x y

r X Y Y
Bias t X Y C Y Y C C

n r N

 
   

     
= − − + + + + − +             

(1.21) 

 

To obtain the MSE of
2

t , square (1.21) and take expectation of the result, the MSE of 
2

t  is obtained.   

 

( )
*

2 2 2

2

1 1 1 1ˆ ˆ1 2
2 2

y x xy x y

r
MSE t Y C X Y X Y C Y C C

r N n
    

            
= − + − + + + + −                         

(1.22) 

 

3 Empirical Study  
 
This section, presents simulation studies designed to evaluate the efficiency of the proposed estimators to assess 

the performance of existing estimators, a simulation was carried out. A population datasets of 1000 units was 

created using function from Table 1. Then, Simple Random Sampling without Replacement (SRSWOR) was 

use to select 100 units 1000 times. The Biases, MSEs and PREs of the considered estimators were computed 

using (1.23), (1.24) and (1.25)   

 

( ) ( )
1000

1

1

1000 j

Bias T T Y
=

= −                    (1.23) 

 

( ) ( )
1000

1

1

1000 j

MSEs T T Y
=

= −                    (1.24) 

 

( )
( )

( )
100

a
MSE V

PREs T
MSE T

=                     (1.25) 

 
where T are any of the proposed or existing estimators 

 
Table 1. Population used for simulation study 

 

Population Auxiliary Variable (X)  Study Variable (Y) 

1 𝑋~𝑏𝑒𝑡𝑎(1,2)  𝑌 = 10 ∗ 𝑋 + 𝑒  

2 𝑋~𝑔𝑎𝑚𝑚𝑎(1,3)  

3 𝑋~exp⁡(1)  

4 𝑋~𝑢𝑛𝑖𝑓(1,10)  
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Table 2. Biases, MSEs and PREs of Estimators and under population I (beta) 
 

ESTIMATOR BIAS MSE PRE ESTIMATOR BIAS MSE PRE 

gmlss
y  -0.0694 0.0048 100 

gmlss
y  

 
-0.0694 0.0048 100 

Proposed Estimator 
1
t  Proposed Estimator 

2
t  

( )1 1
t   -0.04596 0.002112 228.44 

( )2 1
t  0.3477572 0.00135189 357.0 

( )1 2
t  -0.05858 0.003432 140.60 

( )2 2
t   0.327557  0.0024571 196.4 

( )1 3
t   -0.06181 0.003821  126.30 

( )2 3
t  0.3223945  0.0027922 172.8 

( )1 4
t   -0.12867  

0.016556 

29.151 
( )2 4

t  0.2154225  0.0145526 33.16 

( )1 5
t  -0.05816  

0.003383 

 142.65 
( )2 5

t  0.3282335 0.0024148 199.8 

( )1 6
t  -0.06235  0.00388 124.15 

( )2 6
t  0.3215389  0.0028498 169.3 

( )1 7
t   -0.08781  0.00771 62.583 

( )2 7
t  0.2807891  0.006274 76.92 

( )1 8
t  -0.05933  0.00352 137.07 

( )2 8
t  0.3263568  0.0025331 190.5 

( )1 19
t   -0.05509  0.00303 158.99 

( )2 19
t  0.3331449 0.0021186 227.81 

( )1 20
t  -0.022929  0.00052  918.07 

( )2 20
t  0.3846141  0.0001798 2683.7 

( )1 21
t  -0.054603  0.00298  161.87 

( )2 21
t  0.3339343  0.0020728  

232.84 

( )1 22
t  -0.067658  0.00457 105.43 

( )2 22
t  0.3130449  0.0034535 139.75 

( )1 23
t  -0.065011  0.00422  114.19 

( )2 23
t  0.3172813  0.0031451  

153.45 

( )1 24
t  -0.06818 0.004649  103.81 

( )2 24
t  .3122036  0.0035168  

137.25 

( )1 25
t   -0.06005  .003606 133.8308 

( )2 25
t  0.325214  0.0026065  

185.16 

( )1 26
t  -0.06250 0.003906  123.53 

( )2 26
t  0.321290  0.0028666  

168.36 

( )1 27
t  -0.08276  .006849 70.462 

( )2 27
t  0.288877 0.0054882 87.941 

 

Table 3. Biases, MSEs and PREs of estimators and under population II (Gamma) 
       

ESTIMATOR BIAS MSE PRE ESTIMATOR BIAS MSE PRE 

gmlss
y  0.10237 0.0104807  100 

gmlss
y  

 
0.10237 0.010480 100 

Proposed Estimator 
1
t  Proposed Estimator 

2
t  

( )1 1
t  0.065744 0.0043223 242.477 

( )2 1
t   0.35330 0.0026917 389.360 

( )1 2
t  0.083925 0.0070434 148.800 

( )2 2
t  0.37947 0.0048550 215.873 

( )1 3
t  0.089754 0.0080559 130.099 

( )2 3
t  0.38786 0.0056827 184.430 

( )1 4
t  0.092233 0.0085071 123.199 

( )2 4
t  0.39143 0.0060545 173.106 

( )1 5
t  0.089651 0.0080374 130.399 

( )2 5
t   0.38771 0.0056675 184.925 

( )1 6
t  0.091377 0.0083498 125.519 

( )2 6
t  0.39019 0.0059247 176.897 

( )1 7
t  0.093035 0.0086556 121.085 

( )2 7
t  0.39258 0.0061772 169.667 
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ESTIMATOR BIAS MSE PRE ESTIMATOR BIAS MSE PRE 

( )1 8
t  0.091306 0.0083367 125.716 

( )2 8
t   0.39009 0.0059139 177.219 

( )1 19
t  0.079755 0.0063609 164.765 

( )2 19
t   0.37347  0.004302 243.571 

( )1 20
t   0.090708 0.0082281 127.377 

( )2 20
t  0.38923 0.0058242 179.944 

( )1 21
t  0.086815 0.0075369 139.057 

( )2 21
t  0.38363 0.0052572 199.356 

( )1 22
t  0.073968  0.005471 191.554 

( )2 22
t  0.36514 0.0035919 291.787 

( )1 23
t  0.081380 0.0066228 158.252 

( )2 23
t   0.37581 0.0045141 232.176 

( )1 24
t   0.081193 0.0065923 158.983 

( )2 24
t   0.37554 0.0044895 233.449 

( )1 25
t  0.0799445 0.0063911 163.988 

( )2 25
t  0.373742 0.0043272 242.205 

( )1 26
t  0.0871056 0.0075873 138.133 

( )2 26
t  0.384050 0.0052985 197.805 

( )1 27
t  0.0907925 0.0082432 127.142 

( )2 27
t  0.389357 0.0058369 179.5592 

 

Table 4. Biases, MSEs and PREs of estimators and under population III (Exponential) 
        

ESTIMATOR BIAS MSE PRE ESTIMATOR BIAS MSE PRE 

gmlss
y  2.113235 4.465763 100 

gmlss
y  2.113235 4.465763 100 

Proposed Estimator 
1
t  Proposed Estimator 

2
t  

( )1 1
t   1.60226  2.567238 173.952 

( )2 1
t   0.370218  2.058313 216.962 

( )1 2
t   1.802479  3.248931 137.453 

( )2 2
t  0.443522  2.616755 170.660 

( )1 3
t   1.800959  3.243453 137.685 

( )2 3
t  0.442966  2.612263 170.953 

( )1 4
t   1.917439  3.676574 121.465 

( )2 4
t  0.485611 2.967652 150.481 

( )1 5
t   1.839543  3.383917 131.970 

( )2 5
t  0.457092  2.727475 163.732 

( )1 6
t   1.774492  3.14882 141.823 

( )2 6
t  0.433275 2.534669 176.187 

( )1 7
t  1.900243  3.610924 123.673 

( )2 7
t  0.479315 2.913759 153.264 

( )1 8
t   1.813763  3.289738 135.748 

( )2 8
t  0.447654  2.650222 168.505 

( )1 19
t   1.777506  3.159528 141.342 

( )2 19
t  0.434379  2.543448 175.579 

( )1 20
t  1.901305  3.61496 123.535 

( )2 20
t  0.479704  2.917073 153.09 

( )1 21
t  1.81527  3.295203 135.523 

( )2 21
t  0.448205  2.654705 168.220 

( )1 22
t   1.665817  2.774946 160.931 

( )2 22
t   0.393487 2.22833 200.408 

( )1 23
t  1.664983 2.772167 161.092 

( )2 23
t   0.393182 2.226055 200.613 

( )1 24
t  1.689513  2.854456 156.448 

( )2 24
t  0.402163  2.293446 194.718 

( )1 25
t   1.739643  3.026356 147.562 

( )2 25
t  0.420516  2.434286 183.452 

( )1 26
t   1.738249 3.021509 147.799 

( )2 26
t  0.420006  2.430314 183.752 

( )1 27
t   1.870916  3.500326 127.581 

( )2 27
t  0.468578 2.822988 158.192 

 

 



 
 

 

 
Bello et al.; Asian J. Prob. Stat., vol. 26, no. 11, pp. 110-123, 2024; Article no.AJPAS.125841 

 

 

 
120 

 

Table 5. Biases, MSEs and PREs of Estimators and under population IV (Uniform) 

 

ESTIMATOR BIAS MSE PRE ESTIMATOR BIAS MSE PRE 

gmlss
y  1.040 0.680506 100 

gmlss
y  1.0405 0.680506 100 

Proposed Estimator 
1
t  Proposed Estimator 

2
t  

( )1 1
t   0.6838  0.137023 496.6369 

( )2 1
t  -0.847047  0.02948791  2307.749 

( )1 2
t  0.8676  0.241331 281.9803 

( )2 2
t  0.762456 0.09015195 754.8443 

( )1 3
t  0.8721  0.245890 276.7516 

( )2 3
t  -0.760385 0.09312021 730.7832 

( )1 4
t  0.9257  0.4643314 146.5563 

( )2 4
t  -0.735732  0.2521119 269.9226 

( )1 5
t  0.8756  0.383333 177.5237 

( )2 5
t  -0.75877  0.1900951 357.9823 

( )1 6
t  0.8339  0.3282938  207.286 

( )2 6
t  -0.77798  0.149762 454.3922 

( )1 7
t  0.8984  0.5037856  135.0787 

( )2 7
t  -0.748316  0.2832483  240.251 

( )1 8
t  0.8377  0.4555375 149.3855 

( )2 8
t  -0.776229  0.2452482 277.4768 

( )1 19
t  0.8242  0.3166889 214.8818 

( )2 19
t  -0.78242  0.1414849  480.975 

( )1 20
t  0.8945  0.501948 135.5732 

( )2 20
t   -0.750109 ] 0.281786 241.4975 

( )1 21
t  0.8329  0.4517067 150.6524 

( )2 21
t   -0.778446  0.2422674 280.8909 

( )1 22
t  0.7608  0.1625728 418.5861 

( )2 22
t  -0.811589  0.0427614 1591.405 

( )1 23
t  0.7646  0.1639806 414.9922 

( )2 23
t  -0.809851  0.0435296 1563.319 

( )1 24
t  0.7677  0.2307597 294.8985 

( )2 24
t  -0.808440  0.0833499 816.4453 

( )1 25
t  0.8204 0.2010124 338.5398 

( )2 25
t  -0.784168  0.0648742 1048.962 

( )1 26
t  0.8252  0.2041937 333.2654 

( )2 26
t  -0.78195 0.0667992 1018.735 

( )1 27
t  0.8913  0.4205507 161.8133 

( )2 27
t  0.7515617  0.218242  311.813 

 

Tables 2-5 present numerical results that compare the biases, mean squared errors (MSEs) and percentage 

relative efficiencies (PREs) of existing estimators and the new estimators proposed in the study. The findings 

indicate that all the proposed estimators exhibit lower MSEs and higher PREs compared to the existing 

estimators considered in the investigation. The results showed that the proposed estimators 
1
t  and 

2
t  exhibited 

lower MSEs with significant percentage gains in efficiency compared to the estimator proposed by Subramani 

and Gupta (2014) in all the cases considered for the empirical studies with the exception of few cases where few 

members of the new estimators of the proposed performed below standard.  

 

4 Conclusion 

 
The empirical investigation revealed that the proposed estimators consistently are efficient than the estimator 

introduced by Subramani and Gupta (2014) in terms of efficiency, across all the scenarios examined. Notably, 

the proposed estimators demonstrated superior performance in the vast majority of cases, with only few 

exceptions where a subset of the new estimators exhibited subpar results. These findings highlight the proposed 

methodology’s robustness and accuracy advantages, making it valuable contribution to estimator development.   
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