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­e yield ratios of negatively to positively charged pions (�−/�+), negatively to positively charged kaons (�−/�+), and anti-protons to 
protons (�/�) produced in mid-rapidity interval in central gold-gold (Au-Au) collisions, central lead-lead (Pb-Pb) collisions, and inelastic 
(INEL) or non-single-di�ractive (NSD) proton-proton (��) collisions, as well as in forward rapidity region in INEL �� collisions are 
analyzed in the present work. Over an energy range from a few GeV to above 10 TeV, the chemical potentials of light �avor particles (pion, 
kaon, and proton) and quarks (up, down, and strange quarks) are extracted from the mentioned yield ratios in which the contributions 
of strong decay from high-mass resonance and weak decay from heavy �avor hadrons are removed. Most energy dependent chemical 
potentials show the maximum at about 4 GeV, while the energy dependent yield ratios do not show such an extremum.

1. Introduction

­e yield ratios of negatively to positively charged pions 
(�−/�+), negatively to positively charged kaons (�−/�+), and 
anti-protons to protons (�/�), as well as the yield rations of 
other di�erent particles are important quantities measured in 
experiments, where the symbol of a given particle is used for 
its yield for the purpose of simplicity. Based on the yield ratios, 
one can obtain the chemical freeze-out temperature (��ℎ) of 
interacting system and the chemical potential (�������) of bar-
yon in the framework of statistical thermal model [1–4]. In 
the phase diagram of quantum chromodynamics (QCD), ��ℎ
and ������� describe together the phase transition from had-
ronic matter to quark-gluon plasma (QGP) or quark matter 
[4–7]. Except for �������, the chemical potentials of light par-
ticles (pion, kaon, and proton) and light quarks (up, down, 
and strange quarks) are also interesting and important in the 
studies of system evolution and particle production.

According to the statistical thermal model [1–4], to study 
the chemical potentials of light particles and quarks, we need 
the yield ratios of �−/�+, �−/�+, and �/� at the stage of 

chemical freeze-out at which inelastic collisions stop. However, 
the data measured in experiments are usually at the stage of 
past chemical freeze-out or kinetic freeze-out at which the 
strong decay from high-mass resonance and weak decay from 
heavy �avor hadrons contribute to the yield ratios [8], where 
the kinetic freeze-out is a stage of system evolution at which 
the probability density functions of particle momenta are 
invariant. To use the expression of ��ℎ and to obtain the chem-
ical potentials of light particles and quarks in the framework 
of statistical thermal model [1–4], one should remove the 
contributions of strong decay from high-mass resonance and 
weak decay from heavy �avor hadrons to the yield ratios of �−/�+, �−/�+, and �/� measured in experiments [8].

Presently, the yield ratios of �−/�+, �−/�+, and �/� pro-
duced in nucleus-nucleus and proton-proton (��) collisions 
at high energies are available to collect [9] in experiments  
[6, 10–31]. Although the yield ratios in asymmetric collisions 
are also available, we analyze more simply the yield ratios in 
mid-rapidity interval in central gold-gold (Au-Au) collisions 
at the Alternating Gradient Synchrotron (AGS) and the 
Relativistic Heavy Ion Collider (RHIC) within its Beam  
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Energy Scan (BES) program, in central lead-lead (Pb-Pb) col-
lisions at the Super Proton Synchrotron (SPS) and the 
Relativistic Heavy Ion Collider (RHIC), and in inelastic 
(INEL) or non-single-di�ractive (NSD) proton-proton (��) 
collisions at the SPS and the Large Hadron Collider (LHC), as 
well as in forward rapidity region in INEL �� collisions at the 
SPS at its BES. ­ese data are measured by some international 
collaborations over a center-of-mass energy per nucleon pair 
(√���) range from a few GeV to above 10 TeV [6, 10–31].

In this paper, we analyze the chemical potentials of light 
particles and quarks based on the yield ratios in the framework 
of statistical thermal model [1–4]. Comparing with our recent 
work [9], the contributions of strong decay from high-mass 
resonance and weak decay from heavy �avor hadrons to the 
yield ratios are removed. ­e energy dependent chemical 
potentials of light particles and quarks are obtained.

2. The Method and Formalism

To extract the chemical potentials of light particles and quarks, 
the yield ratios of �−/�+, �−/�+, and �/� produced in Au-Au 
(Pb-Pb) and �� collisions at the AGS, SPS at its BES, RHIC at 
its BES, and LHC are needed, where the contributions of 
strong and weak decays to the yield rations should be removed. 
­e same formula on the relation between the yield ratio and 
chemical potential are used in our previous work [9, 32] and 
the present work due to the standard and uni¥ed expression. 
­is results in some repetitions which are ineluctable to give 
a whole representation of the present work.

In the framework of statistical thermal model of nonin-
teracting gas particles with the assumption of standard 
Boltzmann–Gibbs statistics [1–4], based on the Boltzmann 
approximation in the employ of grand-canonical ensemble, 
one has empirically [4, 5, 33–35]

where √��� is in units of GeV and the “limiting” temperature �lim ≈ 0.16 GeV. Meanwhile, based on the Boltzmann 
approximation and the relation to isospin e�ect, one has the 
relation among �/�, ��ℎ, and chemical potential �� of proton 
to be [17, 36, 37]

Equations (1) and (2) are valid at the stage of chemical freeze-
out which is earlier than the strong decay from high-mass 
resonance and weak decay from heavy �avor hadrons.

Similar to Equation (2), �−/�+, �−/�+, and other two neg-
atively to positively charged particles (�−/�+ and �−/�+) with 
together �/� are uniformly shown to be

where � = �, �, �, �, and �; �� denote the yield ratio of nega-
tively to positively charged particle �; and �� denote the chem-
ical potential of the particle �.

(1)��ℎ = �lim 1
1 + exp[2.60 − ln(√���)/0.45] ,

(2)
�
� = exp(−

2��
��ℎ ) ≈ exp(−

2�������
��ℎ ).

(3)�� ≡ �
−

�+ = exp(−
2��
��ℎ ),

To obtain chemical potentials of quarks, the ¥ve yield 
ratios, �� (� = �, �, �, �, and �), are enough. We shall not 
discuss the yield ratio of top quark related antiparticles and 
particles, top quark itself, and chemical potentials of top quark 
related particle and top quark due to the fact that the lifetimes 
of particles contained top quark are very short to be 
measured.

­e chemical potential for quark �avor � is denoted by  ��, where � = �, �, �, �, and � represent the up, down, strange, 
charm, and bottom quarks, respectively. ­e values of �� are 
then expected due to Equation (3). According to Refs. [38, 39], �� (� = �, �, �, �, and �) are expressed by ��ℎ and �� (� = �,  �, �, �, and �) to be

According to Equations (3) and (4), �� of particle � and �� of 
quark � can be obtained in terms of �� or their combination 
to be

respectively.
Although we show formula on �, �, �, and � in Equations 

(3)–(6), there is no �� and �� are analyzed in the present work 
due to the limited data. ­e expressions on �, �, �, and � have 
only signi¥cance in methodology. In fact, the present work 
focuses only �� and �� of light �avor particles, �, �, and �, as 
well as �� of light �avor quarks, �, �, and �.

It should be noted that Equation (1) means a single-��ℎ 
scenario for the chemical freeze-out. It is unambiguous that a 
two- or multi-��ℎ scenario is also possible [40–44]. In the case 
of using the two-��ℎ, we need ��ℎ,� for strange particles and ��ℎ,�� for nonstrange particles. ­us, Equations (3)–(6) are 
revised to

(4)

�� = exp [− 2(��−��)��ℎ ],
�� = exp [− 2(��−��)��ℎ ],
�� = exp [− 2(2��+��)��ℎ ],
�� = exp [− 2(��−��)��ℎ ],
�� = exp [− 2(��−��)��ℎ ].

(5)�� = −12��ℎln��,

(6)

�� = −16��ℎ(ln�� + ln��),
�� = −16��ℎ(−2ln�� + ln��),
�� = −16��ℎ(ln�� − 3ln�� + ln��),
�� = −16��ℎ(−2ln�� + ln�� + 3ln��),
�� = −16��ℎ(ln�� + ln�� − 3ln��),

(7)
�� ≡ �

−

�+ = exp(−
2����ℎ,�),

�� ≡ �
−

�+ = exp(−
2��
��ℎ,��), (� ̸= �),
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respectively.
­e multi-��ℎ scenario will result in di�erent chemical 

freeze-out temperature ��ℎ,� for emission of particles �− and �+
. In the case of considering the multi-��ℎ scenario, Equations 
(3)–(6) should be revised to

(8)

�� = exp[−2(�� − ��)��ℎ,�� ],
�� = exp[−2(�� − ��)��ℎ,� ],
�� = exp[−2(2�� + ��)��ℎ,�� ],
�� = exp[−2(�� − ��)��ℎ,�� ],
�� = exp[−2(�� − ��)��ℎ,�� ],

(9)
�� = −12��ℎ,�ln��,
�� = −12��ℎ,��ln��, (� ̸= �),

(10)

�� = −16��ℎ,��(ln�� + ln��),
�� = −16��ℎ,��(−2ln�� + ln��),
�� = −16(��ℎ,��ln�� − 3��ℎ,�ln�� + ��ℎ,��ln��),
�� = −16��ℎ,��(−2ln�� + ln�� + 3ln��),
�� = −16��ℎ,��(ln�� + ln�� − 3ln��),

(11)�� ≡ �
−

�+ = exp(−
2��
��ℎ,�),

respectively.
In the actual treatment in the present work, we shall use 

the single-��ℎ scenario due to the fact that Equation (1) is avail-
able in literature [4, 5, 33, 34]. ­e two- or multi-��ℎ scenario 
has only signi¥cance in methodology, though they are also 
possible [40–44].

3. Results and Discussion

Figures 1(a)–1(c) present respectively the yield ratios, ��, ��, 
and ��, of negatively to positively charged particles produced 

(12)

�� = exp[−2(�� − ��)��ℎ,� ],
�� = exp[−2(�� − ��)��ℎ,� ],
�� = exp[−2(2�� + ��)��ℎ,� ],
�� = exp[−2(�� − ��)��ℎ,� ],
�� = exp[−2(�� − ��)��ℎ,� ],

(13)�� = −12��ℎ,�ln��,

(14)

�� = −16(��ℎ,�ln�� + ��ℎ,�ln��),
�� = −16(−2��ℎ,�ln�� + ��ℎ,�ln��),
�� = −16(��ℎ,�ln�� − 3��ℎ,�ln�� + ��ℎ,�ln��),
�� = −16(−2��ℎ,�ln�� + ��ℎ,�ln�� + 3��ℎ,�ln��),
�� = −16(��ℎ,�ln�� + ��ℎ,�ln�� − 3��ℎ,�ln��),

Table 1: ­e (pseudo)rapidity intervals, centrality ranges or collision types, and collision systems corresponding to the yield ratios quoted 
in Figure 1.

Open symbol (Pseudo)rapidity Centrality or Type Collisions Collaboration Reference
Circles |�| < 0.05 to |�| < 0.4 0–5% Au-Au, AGS E895, E866, E917 [10–12]
Squares |�| < 0.4 0–10% Au-Au, AGS E802, E866 [13, 14]
Triangles |�| < 0.35 0–5% Au-Au, RHIC PHENIX [15–17]
Stars |�| < 0.1 to |�| < 0.5 0–5% to 0–10% Au-Au, RHIC STAR [6, 18–20]

Circles with + 0 < � < 0.2 or |�| < 0.1 
to |�| < 0.6 0–5% to 0–7.2% Pb-Pb, SPS NA49 [21–24]

Squares with + |�| < 0.5 to |�| < 0.85 0–3.7% Pb-Pb, SPS NA44 [25]
Triangles with + |�| < 0.5 0–5% Pb-Pb, LHC ALICE [26]
Circles with × � > 0 INEL ��, SPS NA61/SHINE [27]
Squares with × |�| < 0.1 NSD ��, RHIC STAR [6, 28]
Triangles with × |�| < 0.5 INEL ��, LHC ALICE [29]
Stars with × |�| < 1 INEL ��, LHC CMS [30, 31]
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Figure 1: Yield ratios, (a) ��, (b) ��, and (c) ��, of negatively to positively charged particles produced in mid-(pseudo)rapidity interval in 
central Au-Au collisions, central Pb-Pb collisions, and INEL or NSD �� collisions, as well as in forward rapidity region in INEL �� collisions. 
­e circles, squares, triangles, and stars without ∙, or the symbols with + and without ∙, denote the yield ratios quoted in literature (see Table 
1 for details). ­e circles, squares, triangles, and stars with ∙, or the symbols with + and ∙, denote the yield ratios corrected to the primary 
production by removing the contributions of strong decay from high-mass resonance and weak decay from heavy �avor hadrons [8]. ­e 
curves are the results ¥tted by us for the √��� dependent �� (see Equations (7)–(13) for details).
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respectively, with �2/dof to be 2.735 and 2.355 respectively. 
­e solid and dotted curves in Figure 1(c) can be empirically 
described by

respectively, with �2/dof to be 7.715 and 5.323, respectively.
­e di�erences between the yield ratios without and with 

the corrections of decays appear mainly over an energy range 
from a few GeV to 100 GeV, though the di�erences are not 
very large. In particular, the di�erence seems to be the largest 
at about 10 GeV. ­e limiting values of all the three yield ratios 
are one at very high energy. According to the functions 
Equations (7)–(13), by using Equations (5) and (6), the chem-
ical potentials, ��, ��, and ��, of light particles, �, �, and �, as 
well as the chemical potentials, ��, ��, and ��, of light quarks, �, �, and �, can be obtained respectively.

­e √��� dependent ��, ���� are shown in  
Figures 2(a)–2(c), respectively. ­e symbols denote the deriv-
ative data obtained from Figure 1 according to Equation (5), 
where di�erent symbols correspond to di�erent collaborations 
marked in the panels which are the same as Figure 1. Because 
of the chemical freeze-out temperature in �� collisions being 
unavailable, we use ��ℎ, 0.9��ℎ, and 0.8��ℎ in Equation (5) to 
obtain the derivative data in INEL or NSD �� collisions, in 
which the corresponding results are orderly denoted by nor-
mal, medium, and small symbols with diagonal crosses. One 
can see that a low chemical freeze-out temperature in �� col-
lisions results in low chemical potentials.

In Figure 2(a), the solid, dotted, and dashed curves repre-
sent the same data samples as Figure 1(a), but showing ��. In 
Figures 2(b) and 2(c), the solid and dotted curves represent 
the same data samples as Figures 1(a) and 1(c), but showing �� and �� respectively. One can see that, with the increase of √���, �� increases and decreases obviously in central Au-Au 
(Pb-Pb) collisions and in INEL or NSD �� collisions respec-
tively, while �� and �� decrease obviously in both central 
Au-Au (Pb-Pb) and INEL or NSD �� collisions. At very high 
energy, all of ��, ��, and �� approach to zero.

Figure 3 is the same as Figure 2, but Figures 3(a)–3(c) 
present respectively the √��� dependent ��, ��, and ��, which 
are derived from the symbols and curves in Figure 1 according 
to Equation (6). ­e di�erent symbols correspond to di�erent 
collaborations marked in the panels which are the same as 
Figures 1 and 2. ­e solid (dotted) and dashed curves are for 
central Au-Au (Pb-Pb) collisions without (with) the correc-
tions of decays and for INEL or NSD �� collisions respectively, 
One can see that, with the increase of √���, ��, ��, and ��
decrease obviously in both central Au-Au (Pb-Pb) and INEL 
or NSD �� collisions. Like ��, ��, and ��, all of ��, ��, and ��
also approach to zero at very high energy.

(20)

�� = exp [−(34.803 ± 3.685) ⋅ (√���)−(0.896±0.041)
− (0.008 ± 0.004)]

(21)

�� = exp [−(37.403 ± 3.776) ⋅ (√���)−(0.884±0.036)
− (0.007 ± 0.003)]

in mid-(pseudo)rapidity interval in central Au-Au collisions, 
central Pb-Pb collisions, and INEL or NSD �� collisions, as 
well as in forward rapidity region in INEL �� collisions. ­e 
circles, squares, triangles, and stars without ∙, or the symbols 
with + and without ∙, denote the yield ratios quoted in litera-
ture. ­e detailed (pseudo)rapidity intervals, centrality ranges 
or collision types, and collision systems are listed in Table 1 
with together collaborations and references. ­e circles, 
squares, triangles, and stars with ∙, or the symbols with + and ∙, denote the yield ratios corrected to the primary production 
by removing the contributions of strong decay from high-mass 
resonance and weak decay from heavy �avor hadrons [8].

­e solid (dotted) and dashed curves in Figure 1(a) are 
the results ¥tted by us for the √��� dependent �� in central 
Au-Au (Pb-Pb) collisions without (with) the corrections of 
decays and in INEL or NSD �� collisions respectively. ­e 
solid (dotted) curves in Figures 1(b) and 1(c) are the results 
¥tted by us for the √��� dependent �� and �� respectively, for 
the combining central Au-Au (Pb-Pb) collisions without 
(with) the corrections of decays and INEL or NSD �� colli-
sions. One can see that, with the increase of √���, �π decreases 
obviously in central Au-Au (Pb-Pb) collisions and increases 
obviously in INEL or NSD �� collisions, and �� and �� increase 
obviously in both central Au-Au (Pb-Pb) and INEL or NSD �� collisions.

­e solid, dotted, and dashed curves in Figure 1(a) can be 
empirically described by

respectively, with �2/dof (�2 per degree of freedom) to be 
0.162, 0.392, and 1.559 respectively. ­e solid and dotted 
curves in Figure 1(b) can be empirically described by

(15)
�� =(4.212 ± 0.682) ⋅ (√���)−(1.799±0.152)+ (1.012 ± 0.019),

(16)
�� =(3.712 ± 0.611) ⋅ ( √���)−(1.519±0.148)+ (1.012 ± 0.019),

(17)�� = − (2.453 ± 0.292) ⋅ (√���)−(0.943±0.057)+ (0.984 ± 0.009),

(18)

�� = [−(0.291 ± 0.028) + (0.306 ± 0.010) ⋅ ln(√���)]
⋅ 	(20 − √���) + [ − (2.172 ± 0.146)
⋅ (√���)−(0.554±0.018) + (1.039 ± 0.016)]
⋅ 	(√��� − 20),

(19)

�� = [−(0.299 ± 0.029) + (0.299 ± 0.009) ⋅ ln(√���)]
⋅ 
(20 − √���) + [ − (2.372 ± 0.146)
⋅ (√���)−(0.554±0.018) + (1.039 ± 0.016)]
⋅ 
(√��� − 20),
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Figure 2: Chemical potentials, (a) ��, (b) ��, and (c) ��, of (a) �, (b) �, and (c) � produced in mid-(pseudo)rapidity interval in central 
Au-Au collisions, central Pb-Pb collisions, and INEL or NSD �� collisions, as well as in forward rapidity region in INEL �� collisions. ­e 
symbols denote the derivative data obtained from Figure 1 according to Equation (5). ­e normal, medium, and small symbols with diagonal 
crosses denote the derivative data in INEL or NSD �� collisions obtained by ��ℎ, 0.9��ℎ, and 0.8��ℎ in Equation (5), respectively. ­e curves 
surrounded the symbols are the derivative results obtained from the curves in Figure 1 according to Equation (5).
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Figure 3: ­e same as Figure 2, but showing the chemical potentials, (a) ��, (b) ��, and (c) ��, of (a) �, (b) �, and (c) � quarks according to 
Equation (6). ­e solid (dotted) and dashed curves are for central Au-Au (Pb-Pb) collisions without (with) the corrections of decays and for 
INEL or NSD �� collisions respectively.
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potential at the stage of chemical freeze-out which is earlier 
than the strong and weak decays. Using Equation (5) with or 
without the corrections of strong and weak decays causes a 
small di�erence of particle chemical potentials. Using Equation 
(22) we have concretely �� = ����, �� = ���� + ����, and �� = ��������� + ���� which should give similar results to 
Equation (5) with or without the corrections of strong and 
weak decays. In particular, both Equations (5) and (22) results 
in zero chemical potential at above top RHIC energy. However, 
Equation (22) is not available to determine ��. Instead, the 
present work shows a way to determine �� and ��
simultaneously.

To determine μ� for a given particle � and �� for a given 
quark �, the present work has used a simple, convenient, and 
alternative method. In the case of utilizing ��ℎ, �� and �� can 
be obtained according to �� which is obtained in experiments 
independently. ­en, we can easily use Equation (5) for each 
particle independently and Equation (6) for each quark inde-
pendently. In the extraction, we have neglected the di�erence 
between the chemical potential ��− of negatively charged par-
ticle �− and the chemical potential ��+ of positively charged 
particle �+ due to small di�erence between ��− and ��+. 
Meanwhile, we have neglected the di�erence between the 
chemical potential �� of anti-quark � and the chemical poten-
tial �� of quark � due to small di�erence between �� and ��. 
Based on the above approximate treatment, Equations (1), (3), 
and (4) are acceptable. Besides, we have used a single-��ℎ sce-
nario for the chemical freeze-out, though a two-��ℎ or multi-��ℎ scenario is also possible.

Before summary and conclusions, it should be noted that 
although the contributions of strong decay from high-mass 
resonance and weak decay from heavy �avor hadrons [8] are 
excluded in the present work, only one mode of decay a�ects 
mainly ��, ��, or �� measured in experiments. For ��, remov-
ing the contribution of strong decay can regain the data from 
the stage at primary production, where the strong decay pulls 
down ��. For ��, removing the contribution of strong decay 
can regain the data from the stage at primary production, 
where the strong decay li¹s ��. For ��, removing the weak 
decay can regain the data from the stage at primary produc-
tion, where the weak decay li¹s ��. Generally, both strong and 
weak decays do not a�ect largely the trends of experimental �� and then �� and ��, in particular at above top RHIC energy.

In the calculation on removing the contributions from 
strong and weak decays from the data, we have utilized a very 
recent literature [8] which works in the framework of statis-
tical thermal model [1–4]. In ref. [8], the energy dependent 
particle ratios “from the stage at primary production, a¹er 
strong decay from high-mass resonance, and a¹er weak decay 
from heavy �avor hadrons” are presented. To compare with 
the data, the statistical thermal model [1–4, 8] is coordinately 
accounted the e�ects of experimental acceptance and trans-
verse momentum cuts. What we do in the present work is to 
directly quote the results obtained in Ref. [8]. One can see that 
strong decay a�ects mainly �� and ��, while weak decay a�ects 
mainly ��. Meanwhile, the e�ect of quantum statistics is much 
smaller and can be neglected [8].

In the case of including the contributions of two decays 
and quantum statistics [8], the extracted energy dependent �� 

From Figures 1 to 3 one can see that, in central Au-Au 
(Pb-Pb) collisions, �� (> 1) decreases obviously and �� (< 1) 
and �� (< 1) increase obviously with the increase of √���. 
­ese di�erences also result in di�erence between �� and ��
(��). ­ese di�erences are caused by di�erent mechanisms in 
productions of pions, kaons, and protons. ­e contribution of 
strong and weak decays to �� is larger than those to �� and  ��. Comparing with pions, kaons have larger cross-section of 
absorbtion in nuclei. In the production of protons, the primary 
protons existed in the impact nuclei also a�ect the yield.

At the top RHIC (200 GeV) and LHC energies, the trends 
of ��, ��, and �� in central Au-Au (Pb-Pb) collisions are close 
to those in INEL or NSD �� collisions due to the increase of 
hard scattering component. Finally, �� approaches to one and �� and �� approaches to zero. ­ese limiting values render that 
the hard scattering process contributes largely, the mean-free-
path of produced particles (quarks) becomes largely, and the 
viscous e�ect becomes weakly at the LHC. Meanwhile, the 
interacting system changes completely from the hadron- 
dominant state to the quark-dominant state at the early and 
medium stage of collisions, though the ¥nal stage is had-
ron-dominant at the LHC.

­e energy dependent ��, ��, ��, and �� also show the max-
imum at about 4 GeV, while the energy dependent ��, ��, ��, ��, and �� do not show such an extremum. ­e particular 
trend of the considered curves are caused by some reasons. In 
terms of nuclear and hadronic fragmentation, over an energy 
range from MeV to GeV, impact nuclei undergone various 
modes of nuclear ¥ssion and fragmentation, as well as mul-
ti-fragmentation and limiting fragmentation, then hadronic 
fragmentation and limiting fragmentation appear. At the stage 
of nuclear limiting fragmentation [45], nuclear fragments have 
similar multiplicity and charge distributions. At the stage of 
hadronic limiting fragmentation, the (pseudo)rapidity spectra 
of relativistic produced particles in forward (backward) rapid-
ity region have the same or similar shape [46]. For heavy 
nucleus such as Au and Pb, the initial energy of hadronic lim-
iting fragmentation is possibly about 4 GeV. In terms of phase 
transition, about 4 GeV is possibly the initial energy of the 
phase transition from a liquid-like state of nucleons and 
mesons with a relatively short mean-free-path to a gas-like 
state of nucleons and mesons with a relatively long mean- 
free-path in central Au-Au (Pb-Pb) collisions.

­eoretically, chemical potentials always correspond to 
some conserved charge. In Ref. [34], it is written how a hadron � has a chemical potential ��. One has

where ��, ��, ��, and �� are respectively the baryon number, 
strangeness, isospin, and charm of the considered particle �, 
and � with lower foot marks ������, �, �, and � correspond to 
respective chemical potentials. Not all of the four quantum 
numbers and four chemical potentials in the expression of �� 
are free parameters since some of them are ¥xed by the conser-
vation laws and some of them are zero for a special particle.

Both Equations (5) and (22) are obtained in the framework 
of statistical thermal model [34, 36–39] or related literature 
[17]. ­ese two formulas are di�erent methods, but they 
should be harmonious in description of particle chemical 

(22)�� = ��������� + ���� + ���� + ����,
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