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Abstract

In this paper we present a new optimization algorithmBoonomic environmental dispat
EED of power systems. The purpose of EED problem is to contipeiteptimal generation far
individual units of the power system by minimizing the Ife®st and emission levels
simultaneously, subject to various equality and inequabtystraints. The proposed algorithim
is population based an evolutionary algorithm which opelatéso phases: in the first ong,
genetic algorithm is implemented as search engine in todgnerate approximate true Pargto
front. This algorithm based on concept of co-evolution amhir algorithm for handling
nonlinear constraints. Also it maintains a finite-sizedha#e of non-dominated solutior}s
which gets iteratively updated in the presence of new sokitimsed on the concept ©of
dominance. Then, in the second phase, rough sets theorypiedds local search engine|in
order to improve the spread of the solutions found soQatimization using multiobjective
evolutionary algorithms yields not a single optimal soluti However, for practical
applications, we need to select one solution which will fsattse different goals to some
extent. TOPSIS method has the ability to identify Hest alternative from a finite set pf
alternatives. The proposed approach is carried out on the stde@dF 30-bus 6-generator test
system. The results demonstrate the capabilities gbribgosed approach to generate true pnd
well-distributed Pareto-optimal nondominated solutionghef multiobjective EED problem.
Also the comparison with the exiting well-known algorithdemonstrates the superiority pf
the proposed approach and confirms its potential to séventltiobjective EED problem.
Keywords: Economic environmental dispatch; multiobjective rojatation; genetic algorithms;
rough sets; TOPSIS.
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1 Introduction

The generation of electricity from fossil fuel releaseseral contaminantsinto the atmosphere.
The problem that has attracted much attention is pollutioimization due to the pressing public
demand for clean air. Operating at absolute minimum coshodonger be the only criterion for
dispatching electric power due to increasing concern the emwéotal consideration. The
purpose of Economic Environmental Dispatch (EED) problem is topatenthe optimal
generation for individual units of the power systemby miningzthe fuel cost and emission
levels simultaneously, subject to various equality and ial@gconstraints including the security
measures of the power transmission/distribution.

To optimize economic environmental dispatch problem, diffetechniques have been reported
in the literature. In past decades, the multiobjecti&DEproblem was converted to a single
objective problem by linear combination of different objeedi as a weighted sum [1- 4]. The
important aspect of this weighted sum method is thatt afsPareto-optimal solutions can be

obtained by varying the weights factors. This requiresipl@ltuns as many times as the number
of desired Pareto-optimal solutions. Also, this methad lsa only used to find Pareto-optimal

solutions in problems having a convex Pareto-optimal frontddtitian, there is no rational basis

of determining adequate weights and the objective functidorseed may lose significance due

to combining noncommensurable objectives.

In other research direction [5-7] the multiobjective EED pnoblevas reduced to a single
objective optimization problem by treating the emission asnstraint with a permissible limit.
This formulation, however, has a severe difficulty in gegttime trade-off relations between cost of
generation and emission.

Goal programming method was also proposed for multiobject&® PBroblem [8]. In this
method, a target or a goal to be achieved for each olgestassigned and the objective function
will then try to minimize the distance from the targetshe objectives. The main drawback of
this method is that it requires a priori knowledge abloatshape of the problem search space.

Recently, the direction is to handle both objectives senelbusly as competing objectives instead
of simplifying the multiobjective problem to a single atijee problem [9-15].The use and
development of heuristics-based multiobjective optitiora techniques (Evolutionary
Algorithms) have significantly grown. Since they use aytation of solutions in their search,
multiple Pareto-optimal solutions can, in principle, foend in one single run. Moreover the
studies on evolutionary algorithms over the past few years steswen that these models can be
efficiently used to eliminate most of the difficulties ofassical methods [16-19]. A genetic
Algorithms (GA) optimization method is one evolutionary aiithms technique which was
successfully applied in real optimization problems.

In this paper we present a new multiobjective optimizatialgorithm to optimize
Economic environmental dispatch EED of power systems. prbposed algorithm operates in
two phases: in the first one, multiobjective versionafgic algorithm is used as search engine in
order to generate approximate true Pareto front. Then isebend phase, rough set theory is
adopted as local search engine in order to improve thedspfethe solutions found so far.
Optimization using multiobjective evolutionary algorithryiglds not a single optimal solution.
However for practical applications, we need to seleetsmiution which will satisfy the different
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goals to some extent. TOPSIS method [20,21] has theyabilidentify the best alternative from a
finite set of alternatives. The proposed algorithm is impleetetd the standard IEEE 30-bus 6-
generator test system to investigate the effectivenetsge gfroposed approach and the results are
compared to different well-known algorithms reportedterature.

2 Principle of Multiobjective Optimization

A multiobjective Optimization Problem (MOP) can be defi as determining a vector of design
variables within a feasible region to minimize a vedobjective functions that usually conflict
with each other. Such a problem takes the form:

Min F ()= (f, (x), £, (X),.oor £, ()
st. xOS 1)

X= (%, %o %)

Where( f,(x), f,(X),...., f,, (x))are the m objectives functiong, x,....,x, ) are the n decision

variables, andS™ R s the solution (parameter) space.

Definition 1.( Pareto optimal solution )X is said to be a Pareto optimal solution of MOEhére

exists no other feasiblex (i.e.,x(0S) such that, fj (x) < fj (x*)for all j=12,..m and

fj (x) < fj (x* ) for at least one objective functiohj .

Definition 2.[22]. (e-dominance) Letf : x - RManda, b0 X . Thena is said toe-dominateb
for somee > 0, denoted a& > b, if and only if fori O{1,...,m}

1-o)f (@)= f (0)
Definition 3. (s -approximate Pareto set) L&t be a set of decision alternatives ang 0. Then
a setx.is called ars-approximate Pareto set of , if any vectora x is e-dominated by at
least one vectdr x , i.e

OaOx:0Ob0 % such thab>g

According to definition 2, the value stands for a relative allowed for the oljecvalues as
declared in Fig. 1. This is especially importanhigher dimensional objective spaces, where the
concept ofe -dominance can reduce the required number ofisphitonsiderably. Also, makes
the algorithms practical by allowing a decision erato control the resolution of the Pareto set
approximation by choosing an appropriatealue
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Fig. 1. Graphs visualizing the concepts of dominance (left) and e-dominance (right)
3 Economic Environmental Dispatch (EED) of Power Systems

The Economic Environmental Dispatch EED problem is formdla® a nonlinear constrained
multiobjective optimization problem which attempts to miizien fuel cost and emission
simultaneously which are conflicting with each other, wtslisfying various equality and
inequality constraints. The problem is formulated as desdrelow.

3.1 Problem Objectives

3.1.1 Minimization of fuel cost objective

The classical economic dispatch problem of finding thenwgdtcombination of power generation,
which minimizes the total fuel cost while satisfying thetat required demand can be
mathematically stated as follows [23]:

n n
h(Fsi) =G :iglci(%i):igl(z’iH PR+ éi)$/ hr )
Where:
C,: total fuel cost ($/hr), G :is fuel cost of generator i
8 t] ¢ fuel cost coefficients of generator i, PG : power generated (p.u)by generator i,

n: number of generators.

3.1.2 Minimization of emission objective

The emission function can be presented as the sum gfpal of emission considered, such as
NOX,SOZ, thermal emission, etc., with suitable pricingwighting on each pollutant emitted.
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In the present study, only one type of emissd@, is taken into account without loss of

generality. The amount dO, emission is given as a function of generator outthdt is, the
sum of a quadratic and exponential function:

n_ _
f2(F6i) = Enoy = igl[lo 2(afi +BRsitH Péi)+§ exp] R;)l ton/ hi(3)

Wherea;, 4,/ ,§ .4 : coefficients of théth generator'sNO, emission characteristic.

3.2 Problem Constraints

3.2.1 Power balance constraint

The total power generated must supply the total BEmand and the transmission losses:

Z Gi~ ™ " Ross=0 )
Where:
Ry : total load demandb(u), and Ross: transmission lossep.().
The transmission loss is given by[24]:
Ploss™ §1|2[”tj('f’ﬁ’+ﬁ??)+i?(i(?jp‘i Rl ®)

Where:

R]..
AR~ Q=i ATy, O G ) p

W, vy

n : number of buses
Rij : series resistance connecting busasd]

V; :voltage magnitude at bus
g; : voltage angle at bus

R :real power injection at bus
Q

| © reactive power injection at bus
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3.2.2 Power generation constraint

The power generateBGi by each generator is constrained between its mimirand maximum

limits
Fimin = 76i < Gimax ~ Gimin= Bi < Bimax  Ymin< Y=< Mmax - F L.
Where:

PGimin: minimum power generated, and

Psimax: Maximum power generated.

3.2.3 Security constraint

A mathematical formulation of the security constel EED problem would require a very large
number of constraints to be considered. Howevertyfuical systems the large proportion of lines
has a rather small possibility of becoming overemhdrhe EED problem should consider only the
small proportion of lines in violation, or near ktion of their respective security limits whictear
identified as the critical lines. We consider otthg critical lines that are binding in the optimal
solution. The detection of the critical lines isa®ed done by the experiences of the DM. An
improvement in the security can be obtained by mizing the following objective function.

k ax
s= f(%i):jgluTj(Fé)u]‘” ) (6)

m
J
th line and k is the number of monitored lines. Tihe flow of the j th line is expressed in terms

of the control variableR;, by utilizing the generalized generation distribntfactors (GGDF)
[24] and is given below.

Where,Tj () is the real power flowl s the maximum limit of the real power flow of the

n

T3(Rg) = igl( Dji i) (7
where, Dji is the generalized GGDF for line j, due to generato
For secure operation, the transmission line Iqad?‘nis restricted by its upper limit as

Sgs le,....,l)

Sﬁ,max'
Where n, is the number of transmission line.
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4 Problem Formulation of Economic Environmental Dispatch
(EED)

The multiobjective economic emission load dispaiptimization problem is therefore formulated
as:

n
Min f(F5i)=G = L, (3 + Ry + ¢ g) s/ hr

n —
Min 5 (Fg;) = Eng, = %, 110 205+ B P+ BB+ & expd Ry )] ton/ hi

n
st '21 Gi~ D Ross™ @
=
Sf = %max ! t= 1,---n|_ine , (8)
Feimin = f6i £ Bimax i= 1.0
QGimin = QGI = %imax i= 1,..n0
Vimin SV = Y max i= 1,..0

5 The Proposed Approach

In this section we present a new multiobjectiveirmjaation algorithm, the proposed algorithm
operates in two phases: in the first one, multicbje version of genetic algorithm is used as
search engine in order to generate approximateRauweto front. Then in the second phase, rough
set theory is adopted as local search engine ierdadimprove the spread of the solutions found
so far All equality constraints are replaced by inequatipnstraints with additional parameter

tol to define the precision of the system.

fi (X, XpX, )= 0= -tols f (X % ,......% ¥ tol

= |, (X XX, )< tOI

= |, (X XpreeeX, )= tol< 0
5.1 Use of Rough Setsin Multiobjective Optimization
For our proposed approach we will try to investgtite Pareto front using a Rough sets grid. To
do this, we will use an initial approximate of tRareto front (provided by any evolutionary
algorithm) and will implement a grid in order totgeore information about the front that will let

to improve this initial approximation [25].

To create this grid, as an input we will have Nsfbke points divided in two sets: the
nondominated points (NS) and the dominated one$. (@Sng these two sets we want to create a
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grid to describe the set NS in order to intendify search on it. This is, we want to describe the
Pareto front in the decision variable space becthese we could easily use this information to
generate more efficient points and then improve thitial Pareto approximation. Fig. 2 shows
how information in objective function space cartiaaslated into information in decision variable
space through the use of a grid. We must notertipoitance of the DS sets as in a rough sets
method, where the information comes from the dpson of the boundary of the two sets NS,
DS. Then the more efficient points provided thetdyetHowever, it is also required to provide
dominated points, since we need to estimate thedsoy between being dominated and being
nondominated. Once the information is computed wae simply generate more points in the
“efficient side”.

X2 f2 o Nondominated
5 D\\- Dominated
®
3 o [ ]
N ;
BimEns
g / e
| Vs :
: ; .
Y
X fy

Fig. 2. Decision variable space (left) and objective function space (right) [25]

5.2 Structure of an Iterative M ultiobjective Sear ch Algorithm

The purpose of this section is to informally deserihe problem we are dealing with. To this end,
let us first give a template for a large classtefative search procedures which are characterized
by the generation of a sequence of search poidtgdinite memory.

Algorithm 1. Iterative search algorithm

1.t=0

2.A® =0

3.while terminate (AY t )= false do

4. t=t+1

5.f® = generate(d) {generate new search point}
6.A" = update( AP, 1)) {update archive}

7.end while

8.0 utput: AWM

An abstract description of a generic iterative skealgorithm is given in Algorithm 1[22]. The
integert denotes the iteration count, the n-dimensionatore¢® is the sample generated at
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iteration t and the setA®™ will be called the archive at iteration t and shbwontain a
representative subset of the samples in the obgedpaceF=[f, (x), f,(x),..., T, (x)]

generated so far. To simplify the notation, we espnt samples by n-dimensional real vectors f
where each coordinate represents one of the oleatiues as shown in Fig. 3.

generate Vector select

o

archive of bounded size
Fig. 3. Block diagram of Archive/selection strategy

The purpose of the functioh® = generat¢)] is to generate a new solutions in each iteratjon t
possibly using the contents of the old archiveA§et. The function AV = updat¢ A™, V)
gets the new solutiongeneraté)l and the old archive sei"™ and determines the updated one,

namelyA® . In general, the purpose of this sample storage @ather 'useful’ information about
the underlying search problem during the run. #s is usually two-fold: On the one hand it is
used to store the ’best’ solutions found so farttenother hand the search operator exploits this
information to steer the search to promising regidrhis procedure could easily be viewed as an
evolutionary algorithm when the generate operat@ssociated with variation (recombination and
mutation). However, we would like to point out tlzdl following investigations are equally valid
for any kind of iterative process which can be désd as Algorithm land used for
approximating the Pareto set of multiobjective miation problems.

5.3 Constraint Multiobjective Optimization via Genetic Algorithm

In any interesting multiobjective optimization ptelm, there exist a number of such solutions
which are of interest to designers and practitisn8ince no one solution is better than any other
solution in the Pareto-optimal set, it is also algn a multiobjective optimization to find as many

such Pareto-optimal solutions as possible. Unlikestmclassical search and optimization

problems, GAs works with a population of soluti@rel thus are likely (and unique) candidates
for finding multiple Pareto-optimal solutions sirtarieously. There are two tasks that are
achieved in a multiobjective GA. (1) Convergencéhi® Pareto-optimal set, and (2) Maintenance
of diversity among solutions of the Pareto-optirsat. Here we present a new optimization
system, which is based on concept of co-evolutimh r@pair algorithms. Also it is based on the

& -dominance concept. The use &fdominance also makes the algorithms practicallloyvang

a decision maker to control the resolution of trerefd set approximation by choosing an

appropriate€ value.
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5.3.1 Initialization stage

The algorithm uses two separate population, tret fiopulationP® consists of the individuals
which initialized randomly satisfying the searclasp (The lower and upper bounds), while the
second populatiorR™ consists of reference points which satisfying ahstraints (feasible
points), However, in order to ensure convergenceht true Pareto-optimal solutions, we
concentrated on how elitism could be introduced.v8dpropose an “archiving/selection” strategy
that guarantees at the same time progress towaedBdreto-optimal set and a covering of the
whole range of the non-dominated solutions. Therittyn maintains an externally finite-sized
archive A" of non-dominated solutions which gets iterativajydated in the presence of new
solutions based on the concept&fdominance

5.3.2 Repair algorithm

The idea of this technique is to separate any liaéndividuals in a population from those that
are infeasible by repairing infeasible individualhis approach co-evolves the population of
infeasible individuals until they become feasiliepair process works as follows. Assume, there
is a search pointv S (where S is the feasible space). In such a case the algogtects one

of the reference points (Better reference point thetter chances to be selected), saySand
creates random pointZ from the segment defined betwesyr , but the segment may be
extended equally on both sides determined by a spserified parameterd[0,1]. Thus, a new
feasible individual is expressed as:

z,=yw+ A-y)r

z,=(1-y)w+ y.r}’y = (1+2p)d - p,60[0,1]09

5.3.3 Evolutionary algorithm: phase 1

In the first phase, the proposed algorithm usessmgarate population, the first populatiBf="
(where t is the iteration counter) consists of itféividuals which initialized randomly satisfying

the search space (The lower and upper bounds)ewhd second populatioR® consists of
reference points which satisfying all constrainfisagible points). Also, it stores initially the
Pareto-optimal solutions externally in a finiteesizarchive of non-dominated solutiohd’ . We
use cluster algorithm to create the next popula®dft, if |P® p|A® |then new population

P! consists of all individual fromA® and the populatiorP® are considered for the clustering
procedure to complete®?, if |P® k|A" |then|P | solutions are picked up at random from

A" and directly copied to the new populatiéf™.

Since our goal is to find new nondominated soligjoone simple way to combine multiple
objective functions into a scalar fitness functj@f,27] is the following weighted sum approach

(=W G0+ 4w (9% W L (=3 w () (10
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Where x is a string (i.e., individual)f (x) is a combined fitness functiorf,(x) is the ith

objective function. When a pair of strings are cdd for a crossover operation, we assign a
random number to each weight as follows:

(11)

random(.)

an; random)(.)

w = , i=12,.m

Calculate the fitness value of each string usirgyrdmdom weightsv . Select a pair of strings
from the current population according to the foliogvselection probability3(x) of a string x in
the populationP®

f (%)~ fun (PY)
2 F(9 = £ (P}

xOp©

B(x) = , wheref . P9 = minf{f )|x0 PV} (12)

This step is repeated for selecting| /2 Paris of strings from the current populations. Each
selected pair apply crossover operation to genénaienew strings, for each strings generated by
crossover operation, apply a mutation operator witprespecified mutation probability. The
system also includes the survival of some of gowfividuals without crossover or mutation. The
algorithm maintains a finite-sized archi®é of non-dominated solutions which gets iteratively
updated in the presence of a new solutions basdteoooncept of -dominance, such that new
solutions are only accepted in the archive if taey note -dominated by any other element in the
current archive .The use a&f-dominance also makes the algorithms practical lbywiang a
decision maker to control the resolution of the ef@rset approximation by choosing an
appropriates value.

5.3.4 L ocal search mechanism inspired on rough setstheory: phase 2

Upon termination of phase 1, we start phase2, wittial approximate of the Pareto front
(provided by the proposed algorithm in phasel) Wimioted as NS. Also all dominated solutions
are marked as DS. It is worth remarking that NSsieply be a list of solutions.

From the set NS we choose NNS points previouslyelented. If we do not have enough
unselected points, we choose the rest randomly thenset DS. Next, we choose from the set NS,
NDS points previously unselected ( and in the sarag if we do not have enough unselected
points, we complete them in a random fashion) thgsiats will be used to approximate the
boundary between the Pareto front and the reteofeasible set in decision variable space. We
store theses points in the set Items and perfougtrsets iterations:

1- Range Initialization: for each decision variableve compute and sort (from smallest
and highest) the different values it takes in tle¢ bems. Then, for each decision
variable, we have a set oéng values and combining all these sets we have a non-
uniform grid in decision variable space.

2- Compute Atoms: we compute “NNS rectangular atonesitered in the NNS efficient
points selected. To build a rectangular atom aasetito a nondominated poigto items
we compute the following upper and lower boundsefich decision variable:
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* Lower Boundi : Middle point betweernx®and the previous value in the set

rang

» Upper Boundi : Middle point betweernx®and the following value in the set

rang

» If there are no pervious or subsequent valuesing, , we consider the absolute

lower or upper bound of variable This setting lets the method to explore close
to the feasible set boundaries.

3- Generate Offspring: inside each atom we randomly generate offsprivg paints. Each
of these points is sent to the set NS to check isimust be included as a new
nondominated point. If any point in NS is dominatgdthis new point, it is sent to the

set DS.

Algorithm 2 shows the operator far-approximate Pareto set, the idea is that "new
solutions are only accepted in the archive if tleg note-dominated by any other
element of the current archive". If a solution epted, all dominated solutions are
removed. The pseudo code of the proposed algoighdaclared irAlgorithm 3.

Algorithm 2: Operator for g-approximate Pareto set

1.INPUT : A x

2.if X' O A such that k- x the
3.A=A

4.else

5.D={xX0A: x> %
6.A=A0{x%\ D

7.end if

8.Output: A

Algorithm 3: The proposed algorithm(pseudo code of the proposed algorithm)

t=0
2. Create ¥ R(O)
3. A9 = nondomin ated &0))

3. while terminate (/&t) t F false do
4.t=t+1

5. P(t) = generatg At_l) , th—l))
6.A" = updarg A A

7.end while

80utput: A(t)

8. A(t) - NS, Dominted Pointes, D
9. Compute "Atom"

{generate new search §oi

{update archive (algorithm

10.Comput Upper Bour?d , Lower Boqn Phase

11Generatenew offpring.
12. Update NS set

130utput NS

Phasé

B)}
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6 Implementation of the Proposed Approach

In order to validate the proposed approach andtdatvely compare its performance with other
MOEAs, we present in this section comparison stagplied to the standard IEEE 30-bus 6-
generator test system with two objective. The sifligle diagram of this system is shown in Fig. 4
and the detailed data are given in [7,28]. The eslaf fuel cost and emission coefficients are
given in Table 1. For comparison purposes withrémorted results, the system is considered as
losses and the security constraint is released.tdtteniques used in this study were developed
and implemented using MATLAB environment. Tablei?eg Reactive power limit and Voltage
limits and Table 3 lists the parameter setting usetle algorithm for all runs.

10

m
G,
G?r

Fig. 4. Snglelinediagram of |EEE 30-bus 6-gener ator test system
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Table 1. Generator fuel cost and emission coefficients

Cost G1l G2 G4 G5 G6
a 10 10 10 20 10
b 200 150 100 180 150
C 10C 12C 60 40 10C
Emission a 4.091 2.543 5.426 4.258 6.131
4 -5.55¢ -6.04% -3.55( -5.09¢ -5.55¢
)4 6.490 4.638 3.380 4.586 5.151
4 2.0E-4 5.0E-4 2.0E-3 1.0E-6 1.0E-5
A 2.857 3.333 2.000 8.000 6.667

Table 2. Reactive power limit and voltage limits

Bus Voltage Reactive power
Vi min Vi max QGi min QGi max
1 0.9 1.05 -0.2 2.0
2 0.9 1.05 -0.2 2.0
3 0.6 1.0t -0.2 2.0
4 0.9 1.05 -0.2 2.0
5 0.¢ 1.0t -0.2 2.C
6 0.9 1.05 -0.2 2.0
In Table,Qmin, Qmax, Vmin and Vmax are in (p.u)
Table 3. The parameter setting of proposed algorithm
Parameter Setting
Population size 200
No. of Generatio 20C
Crossover probabilityP, 0.9
Mutation probability P, 0.0z
Selection operator Roulette Wheel
Crossover operator Single point

Mutation operator
Relative tolerancé&

Polynomial mutation
10e-6

7 Results and Discussion

Fig. 5 shows well-distributed Pareto optimal san8 obtained by the proposed algorithm after
200 generations. It is clear from the figure thard®o-optimal set is well distributed and has
satisfactory diversity characteristics comparechwareto-optimal front of the NPGA [9] and

Pareto-optimal front of the SPEA [10].
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Fig. 5. Pareto-optimal front of the proposed approach

Tables 4 and 5 show the best fuel cost and bt emission obtained by proposed algorithm as

compared to Nondominated Sorting Genetic AlgoritRSGA) [8], Niched Pareto Genetic
Algorithm (NPGA) [9], Strength Pareto EvolutionaAlgorithm (SPEA) [10] and IT-CEMOP
[29]. It can be deduced that the proposed algorifimiis comparable minimum fuel cost and

comparable minimunmNO, emission to the four evolutionary algorithms.

Table4. Best total $/h fud cost

NSGA NPGA SPEA IT-CEMOP  Proposed
approach

P, 0.1168 0..1245 0.1086 0.1739 0.928
P, 0.3165 0.2792 0.3056 0.3578 0.2868
Pss 0.5441 0.6284 0.5818 0.5311 0.5159
P, 0.944% 1.026¢ 0.984¢ 0.979( 0.989¢
Pss 0.5498 0.4693 0.5288 0.4429 0.5803
Pss 0.3964 0.39993 0.3584 0.3725 0.3448
Best cost. 608.245 608.147 607.807 606.4533 606.082
Corresponding  0.21664 0.22364 0.22015 0.2028 0.2206
Emission

Convergence of fuel cost and emission objectivetfans are shown in Figs. 6 and 7. In the view
of our results, the algorithm converges to therogtisolution as in Figs. 6 and 7, where the Cost
of generating is converges to the optimal valuesoAlhe Emissions of undesired materials is
converges to the optimal value.
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Table5. Best total ton/h NO, emission

NSGA NPGA SPEA IT-CEMOP Proposed
approach
P, 0.4113 0.3923 0.4043  0.3885 0.4046
Ps, 0.459: 0.470( 0.452¢ 0.4984 0.461:
Pss 0.5117 0.5565 0.5525 0.5167 0.5289
Ps. 0.3724 0.3695 0.4079 0.4502 0.3874
P.s 0.581( 0.559¢ 0.546¢ 0.5205 0.533¢
P.s 0.530¢ 0.516: 0.500¢ 0.5005 0.501¢
Best Emission. 0.19432 0.19424 0.19422 0.1882 @194
Corresponding  647.25: 645.98:- 642.60:! 642.897! 643.372!
cost
635
630 R
_ 6250 e R
8 .
g 620 |- - i
D gi50 |
L]
610 " R
o R : : : :
0 20 40 60 80 100 120 140 160 180 200
Geneation
Fig. 6. Convergence of fuel cost objective
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E  0.2f .
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g °
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Fig. 7. Conver gence emission objective
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8 Identifying a Satisfactory Solution

Optimization of the above-formulated objective ftioas using multiobjective genetic algorithms
yields not a single optimal solution, but a sePafeto optimal solutions, in which one objective
cannot be improved without sacrificing other ohijgz$. For practical applications, however, we
need to select one solution, which will satisfy tliéerent goals to some extent. Such a solution is
called best compromise solution. TOPSIS (Techniguérder Preference by Similarity to Ideal
Solution) method [20,21,30] has the ability to itignthe best alternative from a finite set of
alternatives quickly.

8.1 Theldea of TOPSIS can be expressed in a Series of Steps:

(1) Obtain performance data for n alternatives Meriteriaxij (i=1,....,n ,j=1,....,M).
(2) Calculate normalized rating (vector normalizats used)ij .

3) Develop a set of importance wei , for each of the criteria. The basis for these
( p p g

weights can be anything, but, usually, is ad hdlecgve of relative importance.

Vi = w;

i i l] (13)

(4) ldentify the ideal alternative (extreme penfiance on each criterior8+ .

+ _ .4+ o+ + + . _ : : ; -_
S _{\i' i Y e yn}—{(max \/ij | O Jl) ( min }i | O Jz) = l)} (14)
Where ‘]l is a set of benefit attributes ari% is a set of cost attributes.

(5) Identify the nadir alternative (reverse exteeperformance on each criterioB)_.

S :{\i_’ \5 \ﬁ_,..%}:{(min Vi | O ;_IL),(maXﬁ | O J2) = 1;} (15)

(6) Develop a distance measure over each crit¢oidoth ideal D+) and nadir 0 ).

Di+ = /EJ;(VIJ_ _Vj+)2v D~ = % K _Y_ 4 (16)

(7) For each alternative, determine a ratio R etuthe distance to the nadir divided by the
sum of the distance to the nadir and the distamtieet ideal,

D™

- (17)
D_+D"
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(8) Rank alternative according to ratio R (in St¢in descending order.
(9) Recommend the alternative with the maximunorati

Therefore it can be said that TOPSIS method is@ttre since limited subjective input (namely
the weight values which reflect the degree of &attery of each objective) is needed from the
DM to get a satisfactory results from the Paretays&kly. Also, this method can be classified as
interactive approach, where the DM specifies in@lies according his needs.

Here, we need to select one solution (one operaitiigt), which will satisfy the different goals to
some extent. Such a solution is called best comigeorsolution. The identification of a best
compromise solution requires taking into accouatgreferences expressed by the decision-maker
DM, which reflect the degree of satisfactory of eabjective. We incorporate relative weights of

criterion importance a[sr\ﬁ :0.2,W2 = 0.8}, which give relative importance for fuel cost a2 0

and relative importance foNO, emission objective as 0.8, the bigger the weightactor, the
more important is the attainment of that objective.

In order to obtain the normalized rating, fuel c%l[ﬂ, and emissionfz([)] are optimized

individually to obtain minimum values of the objees. The minimum and maximum values of
the objectives are given in Table 6 (Minimum valoéshe objectives are obtained by giving full
consideration to one of the objectives and negigdtie others).

Table 6. The minimum and maximum values of the objectives

Objective M ax Min
Fuel cost ($) 643.3729 605.0802
Emissior (ton) 0.220¢ 0.194:

For each alternative, determine a rd&@iequal to the distance to the nadir divided byshm of

the distance to the nadir and the distance todealias in step 7. Alternatives have been ranked
by maximizing the ratio R. It is obvious that adit ©f solutions are ranked corresponding to the
relative weights of criterion importance (degreeatisfactory)

To declare the performance of changing the we|qm§, w2| w, + w2:1} on the best
compromise solution, we plot different values ofigi W, versus best compromise solution of
fl(m (Cost ($/h) and versus best compromise solutiomzcﬁ[ﬂ (Emission (ton/h) as in Fig. 8. It

is obvious that for each weight (criterion impoxta)) different best compromise solutions had
found proportional to the criterion importance (giging factor).
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Fig. 8. Weight W, versus best compromise cost and emission

9 Conclusion

The proposed approach presented in this paper pyied to Economic Emission Load Dispatch
(EELD) problem which formulated as multiobjectivptinization problem with competing fuel
cost, and emission. The proposed algorithm openatego Phases: in the first one, multiobjective
version of genetic algorithm is used as searchnenigi order to generate approximate true Pareto
front. This algorithm based on concept of co-evolutand repair algorithm. Also it maintains a
finite-sized archive of nondominated solutions whigets iteratively updated in the presence of
new solutions based on the concep&oflominance. Then in the second phase, rough setythe
is adopted as local search engine in order to isgptioe spread of the solutions found so far. Our
proposed approach keeps track of all the feasiligtiens found during the optimization. The
following are the significant contributions of thpaper:

1. The results prove superiority of the proposed apgindo those reported in the literature.

2. The non-dominated solutions in the obtained Paoptonal set are well distributed and
have satisfactory diversity characteristics.

3. The proposed approach is efficient for solving roon@x multiobjective optimization
where multiple Pareto-optimal solutions can be tbimone simulation run.

4. The proposed technique has been effectively apptiexblve the EED considering two
objectives simultaneously, with no limitation inrfaing more than two objectives.

5. TOPSIS method is employed to extract the best comige solution from the trade-off
curve according to the determined weight factoe, bigger the weight factor, the more
important is the attainment of that objective.
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