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Abstract 
 

In this paper we present a new optimization algorithm for Economic environmental dispatch 
EED of power systems. The purpose of EED problem is to compute the optimal generation for 
individual units of the power system by minimizing the fuel cost and emission levels 
simultaneously, subject to various equality and inequality constraints. The proposed algorithm 
is population based an evolutionary algorithm which operates in two phases: in the first one, 
genetic algorithm is implemented as search engine in order to generate approximate true Pareto 
front. This algorithm based on concept of co-evolution and repair algorithm for handling 
nonlinear constraints. Also it maintains a finite-sized archive of non-dominated solutions 
which gets iteratively updated in the presence of new solutions based on the concept of ε -
dominance. Then, in the second phase, rough sets theory is adopted as local search engine in 
order to improve the spread of the solutions found so far. Optimization using multiobjective 
evolutionary algorithms yields not a single optimal solution. However, for practical 
applications, we need to select one solution which will satisfy the different goals to some 
extent. TOPSIS method has the ability to identify the best alternative from a finite set of 
alternatives. The proposed approach is carried out on the standard IEEE 30-bus 6-generator test 
system. The results demonstrate the capabilities of the proposed approach to generate true and 
well-distributed Pareto-optimal nondominated solutions of the multiobjective EED problem. 
Also the comparison with the exiting well-known algorithms demonstrates the superiority of 
the proposed approach and confirms its potential to solve the multiobjective EED problem. 

Keywords: Economic environmental dispatch; multiobjective optimization; genetic algorithms; 
rough sets; TOPSIS. 
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1 Introduction 
 
The generation of electricity from fossil fuel releases several contaminantsinto the atmosphere. 
The problem that has attracted much attention is pollution minimization due to the pressing public 
demand for clean air. Operating at absolute minimum cost can no longer be the only criterion for 
dispatching electric power due to increasing concern the environmental consideration. The 
purpose of Economic Environmental Dispatch (EED) problem is to compute the optimal 
generation for individual units of the power systemby minimizing the fuel cost and emission 
levels simultaneously, subject to various equality and inequality constraints including the security 
measures of the power transmission/distribution.  
 
To optimize economic environmental dispatch problem, different techniques have been reported 
in the literature. In past decades, the multiobjective EED problem was converted to a single 
objective problem by linear combination of different objectives as a weighted sum [1- 4]. The 
important aspect of this weighted sum method is that a set of Pareto-optimal solutions can be 
obtained by varying the weights factors. This requires multiple runs as many times as the number 
of desired Pareto-optimal solutions. Also, this method can be only used to find Pareto-optimal 
solutions in problems having a convex Pareto-optimal front. In addition, there is no rational basis 
of determining adequate weights and the objective function so formed may lose significance due 
to combining noncommensurable objectives. 
 
In other research direction [5-7] the multiobjective EED problem was reduced to a single 
objective optimization problem by treating the emission as a constraint with a permissible limit. 
This formulation, however, has a severe difficulty in getting the trade-off relations between cost of 
generation and emission. 
 
Goal programming method was also proposed for multiobjective EED problem [8]. In this 
method, a target or a goal to be achieved for each objective is assigned and the objective function 
will then try to minimize the distance from the targets to the objectives. The main drawback of 
this method is that it requires a priori knowledge about the shape of the problem search space. 
 
Recently, the direction is to handle both objectives simultaneously as competing objectives instead 
of simplifying the multiobjective problem to a single objective problem [9-15].The use and 
development of heuristics-based multiobjective optimization techniques (Evolutionary 
Algorithms) have significantly grown. Since they use a population of solutions in their search, 
multiple Pareto-optimal solutions can, in principle, be found in one single run. Moreover the 
studies on evolutionary algorithms over the past few years have shown that these models can be 
efficiently used to eliminate most of the difficulties of classical methods [16-19]. A genetic 
Algorithms (GA) optimization method is one evolutionary algorithms technique which was 
successfully applied in real optimization problems. 
 
In this paper we present a new multiobjective optimization algorithm to optimize 
Economic environmental dispatch EED of power systems. The proposed algorithm operates in 
two phases: in the first one, multiobjective version of genetic algorithm is used as search engine in 
order to generate approximate true Pareto front. Then in the second phase, rough set theory is 
adopted as local search engine in order to improve the spread of the solutions found so far. 
Optimization using multiobjective evolutionary algorithms yields not a single optimal solution. 
However for practical applications, we need to select one solution which will satisfy the different 
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goals to some extent. TOPSIS method [20,21] has the ability to identify the best alternative from a 
finite set of alternatives. The proposed algorithm is implemented to the standard IEEE 30-bus 6-
generator test system to investigate the effectiveness of the proposed approach and the results are 
compared to different well-known algorithms reported in literature.  
 
2 Principle of Multiobjective Optimization 
 
A multiobjective Optimization Problem (MOP) can be defined as determining a vector of design 
variables within a feasible region to minimize a vector of objective functions that usually conflict 
with each other. Such a problem takes the form:  
 

1 2

1 2

   ( )  (  ( ), ( ), ..., ( ))

. .     

 ( , , ..., )

m

n

TM in F x f x f x f x

s t x S

Tx x x x

=
∈

=

                      (1)  

 

Where 1 2( ), ( ), ...., ( ))( mf x f x f x are the m objectives functions, 1 2( , ,..., )nx x x  are the n decision 

variables, and 
nS R∈   is the solution (parameter) space.  

 
Definition 1.( Pareto optimal solution ): *x  is said to be a Pareto optimal solution of MOP if there 

exists no other feasible x  (i.e.,x S∈ ) such that, *( ) ( )f x f xj j≤ for all 1, 2,...,j m=  and 

*( ) ( )f x f xj j< for at least one objective function f j . 

 

Definition 2.[22]. (ε-dominance) Let : mf x R→ and ,a b X∈ . Then a  is said to ε-dominate b  

for some ε > 0, denoted as a bεf , if and only if for {1,..., }i m∈  

(1 ) ( ) ( )f a f bi iε− ≤  

Definition 3. (ε -approximate Pareto set) Let X  be a set of decision alternatives and 0ε > . Then 
a set xε is called an ε-approximate Pareto set of X , if any vector a x∈  is  ε-dominated by at 

least one vectorb xε∈ , i.e 

 
:    ba x b x such that aε ε∀ ∈ ∃ ∈ f  

 
According to definition 2, the ε value stands for a relative allowed for the objective values as 
declared in Fig. 1. This is especially important in higher dimensional objective spaces, where the 
concept of ε -dominance can reduce the required number of solutions considerably. Also, makes 
the algorithms practical by allowing a decision maker to control the resolution of the Pareto set 
approximation by choosing an appropriate ε-value 
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Fig. 1. Graphs visualizing the concepts of dominance (left) and ε-dominance (right) 
 

3 Economic Environmental Dispatch (EED) of Power Systems 
 
The Economic Environmental Dispatch EED problem is formulated as a nonlinear constrained 
multiobjective optimization problem which attempts to minimize fuel cost and emission 
simultaneously which are conflicting with each other, while satisfying various equality and 
inequality constraints. The problem is formulated as described below. 
 
3.1 Problem Objectives 
 
3.1.1 Minimization of fuel cost objective 
 
The classical economic dispatch problem of finding the optimal combination of power generation, 
which minimizes the total fuel cost while satisfying the total required demand can be 
mathematically stated as follows [23]: 
 

2( ) ( ) ( )$ /1 1 1

n n
f P C C P a b P c P hrt i i i iGi Gi Gi Gii i

= = = + +∑ ∑
= =                          

(2) 

 
Where: 
 

C : total fuel cost ($/hr),                                          C : is fuel cost of generator i

a ,b ,c : fuel cost coefficients of generator i,           P : power generated (p.u)by generator i,Gi i i i

t i

n: number of generators.  
 
3.1.2 Minimization of emission objective 
 
The emission function can be presented as the sum of all types of emission considered, such as

NOx , 2SO , thermal emission, etc., with suitable pricing or weighting on each pollutant emitted. 
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In the present study, only one type of emission NOx  is taken into account without loss of 

generality. The amount of NOx emission is given as a function of generator output, that is, the 

sum of a quadratic and exponential function: 
 

2 2
( ) [10 ( ) exp( )] /2 1

n
f P E P P P ton hri i i i iGi NO Gi Gi Gix i

α β γ ξ λ−
∑= = + + +
=

(3) 

 

Where, , , , ,i i i i iα β γ ξ λ : coefficients of the ith generator's NOx emission characteristic. 

 
3.2 Problem Constraints 
 
3.2.1 Power balance constraint 
 
The total power generated must supply the total load demand and the transmission losses: 
 

0
1

n
P P PD LossGii

∑ − − =
=                                                   

(4) 

 
Where:   
 

PD : total load demand (p.u.), and           Ploss: transmission losses (p.u.). 

 
The transmission loss is given by[24]: 
 

[ ( ) ( ]
1 1

n n
P A P P Q Q B Q P PQij i j i j ij i j i jLoss i i

= + + −∑ ∑
= =                                    

(5) 

 
Where: 
 

,    Q     , A cos( ),      B sin( )ij ij

R Rij ij
P P P Q Qi i i j i jDi DiGi Gi V V V Vi j i j

δ δ δ δ= − = − = − = −  

 
n : number of buses 

Rij : series resistance connecting buses i and j 

Vi  : voltage magnitude at bus i 

iδ  : voltage angle at bus i 

Pi  : real power injection at bus i 

Qi  : reactive power injection at bus i 
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3.2.2 Power generation constraint 
 
The power generated PGi  by each generator is constrained between its minimum and maximum 

limits 
 

,       ,     ,              1,......,maxmax maxmin min minP P P Q Q Q V V V i ni iGi Gi Gi GiGi Gi i≤ ≤ ≤ ≤ ≤ ≤ =

 
Where: 
 

minPGi : minimum power generated, and   

maxPGi : maximum power generated. 

 
3.2.3 Security constraint 
 
A mathematical formulation of the security constrained EED problem would require a very large 
number of constraints to be considered. However, for typical systems the large proportion of lines 
has a rather small possibility of becoming overloaded. The EED problem should consider only the 
small proportion of lines in violation, or near violation of their respective security limits which are 
identified as the critical lines. We consider only the critical lines that are binding in the optimal 
solution. The detection of the critical lines is assumed done by the experiences of the DM. An 
improvement in the security can be obtained by minimizing the following objective function. 
 

max
( ) (| ( ) | / )

1

k
S f P T P Tj jGi Gj

∑= =
=                                                 

(6) 

 

Where, ( )T Pj G  is the real power flow 
max

Tj is the maximum limit of the real power flow of the j 

th line and k is the number of monitored lines. The line flow of the j th line is expressed in terms 

of the control variablesPGs , by utilizing the generalized generation distribution factors (GGDF) 

[24] and is given below. 
 

( ) ( )
1

n
T P D PjiJ G Gii

∑=
=                                                                                

(7) 

 

where, D ji is the generalized GGDF for line j, due to generator i 

 For secure operation, the transmission line loading Sl is restricted by its upper limit as 

, 1, ....,maxS S n≤ =l
l l l

 

Where n
l

is the number of transmission line. 
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4 Problem Formulation of Economic Environmental Dispatch 
(EED) 

 
The multiobjective economic emission load dispatch optimization problem is therefore formulated 
as: 
 

2   ( ) ( ) $ /1 1

2 2  ( ) [10 ( ) exp( )] /2 1

. .        0,                          
1

             ,            max
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               1, ...., ,

                         1, ......,             maxmin

                       1, ......,maxmin

                             1, .....maxmin

nLine

P P P i nGi GiGi

Q Q Q i nGi GiGi

V V V ii ii

=
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l

.,n

(8) 

 

5 The Proposed Approach 
 
In this section we present a new multiobjective optimization algorithm, the proposed algorithm 
operates in two phases: in the first one, multiobjective version of genetic algorithm is used as 
search engine in order to generate approximate true Pareto front. Then in the second phase, rough 
set theory is adopted as local search engine in order to improve the spread of the solutions found 
so far. All equality constraints are replaced by inequality constraints with additional parameter 

tol  to define the precision of the system. 
 

1 2 1 2

1 2

1 2
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5.1 Use of Rough Sets in Multiobjective Optimization 
 
For our proposed approach we will try to investigate the Pareto front using a Rough sets grid. To 
do this, we will use an initial approximate of the Pareto front (provided by any evolutionary 
algorithm) and will implement a grid in order to get more information about the front that will let 
to improve this initial approximation [25].  
 
To create this grid, as an input we will have N feasible points divided in two sets: the 
nondominated points (NS) and the dominated ones (DS). Using these two sets we want to create a 
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grid to describe the set NS in order to intensify the search on it. This is, we want to describe the 
Pareto front in the decision variable space because then we could easily use this information to 
generate more efficient points and then improve this initial Pareto approximation. Fig. 2 shows 
how information in objective function space can be translated into information in decision variable 
space through the use of a grid. We must note the importance of the DS sets as in a rough sets 
method, where the information comes from the description of the boundary of the two sets NS, 
DS. Then the more efficient points provided the better. However, it is also required to provide 
dominated points, since we need to estimate the boundary between being dominated and being 
nondominated. Once the information is computed we can simply generate more points in the 
“efficient side”.   
 

 
 

Fig. 2. Decision variable space (left) and objective function space (right) [25] 
 
5.2 Structure of an Iterative Multiobjective Search Algorithm 
 
The purpose of this section is to informally describe the problem we are dealing with. To this end, 
let us first give a template for a large class of iterative search procedures which are characterized 
by the generation of a sequence of search points and a finite memory. 
 

Algorithm 1. Iterative search algorithm 

( 0 )

( t )

( )

( ) ( 1 ) ( )

( )

1 . t 0

2 .  0

3 .   t e r m i n a t e  ( A , )  d o

4 . 1

5 .  ( )                    { g e n e r a t e  n e w  s e a r c h  p o i n t }

6 .  ( , )       { u p d a t e  a r c h i v e }

7 .   

8 .  :

t

t t t

t

A

w h i l e t f a l s e

t t

f g e n e r a t e

A u p d a t e A f

e n d w h i l e

O u t p u t A

−

=

=

=
= +

= ⋅

=

 

 
An abstract description of a generic iterative search algorithm is given in Algorithm 1[22]. The 
integer t denotes the iteration count, the n-dimensional vector ( )tf  is the sample generated at 
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iteration t and the set ( )tA will be called the archive at iteration t and should contain a 
representative subset of the samples in the objective space 1 2F=[ ( ), ( ), ..., ( )]mf x f x f x  

generated so far. To simplify the notation, we represent samples by n-dimensional real vectors f 
where each coordinate represents one of the objective values as shown in Fig. 3. 
 

 
 

Fig. 3. Block diagram of Archive/selection strategy 
 
The purpose of the function ( ) ( )tf generate= ⋅  is to generate a new solutions in each iteration t, 

possibly using the contents of the old archive set( 1)tA − . The function ( ) ( 1) ( ) ( , )t t tA update A f−=  

gets the new solutions ( )generate⋅  and the old archive set ( 1)tA − and determines the updated one, 

namely ( )tA . In general, the purpose of this sample storage is to gather ’useful’ information about 
the underlying search problem during the run. Its use is usually two-fold: On the one hand it is 
used to store the ’best’ solutions found so far, on the other hand the search operator exploits this 
information to steer the search to promising regions. This procedure could easily be viewed as an 
evolutionary algorithm when the generate operator is associated with variation (recombination and 
mutation). However, we would like to point out that all following investigations are equally valid 
for any kind of iterative process which can be described as Algorithm 1and used for 
approximating the Pareto set of multiobjective optimization problems.  
 
5.3 Constraint Multiobjective Optimization via Genetic Algorithm 
 
In any interesting multiobjective optimization problem, there exist a number of such solutions 
which are of interest to designers and practitioners. Since no one solution is better than any other 
solution in the Pareto-optimal set, it is also a goal in a multiobjective optimization to find as many 
such Pareto-optimal solutions as possible. Unlike most classical search and optimization 
problems, GAs works with a population of solutions and thus are likely (and unique) candidates 
for finding multiple Pareto-optimal solutions simultaneously. There are two tasks that are 
achieved in a multiobjective GA. (1) Convergence to the Pareto-optimal set, and (2) Maintenance 
of diversity among solutions of the Pareto-optimal set. Here we present a new optimization 
system, which is based on concept of co-evolution and repair algorithms. Also it is based on the 
ε -dominance concept. The use of ε -dominance also makes the algorithms practical by allowing 
a decision maker to control the resolution of the Pareto set approximation by choosing an 
appropriate ε  value. 
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5.3.1 Initialization stage 
 
The algorithm uses two separate population, the first population ( )tP consists of the individuals 
which initialized randomly satisfying the search space (The lower and upper bounds), while the 
second population ( )tR consists of reference points which satisfying all constraints (feasible 
points), However, in order to ensure convergence to the true Pareto-optimal solutions, we 
concentrated on how elitism could be introduced. So, we propose an “archiving/selection” strategy 
that guarantees at the same time progress towards the Pareto-optimal set and a covering of the 
whole range of the non-dominated solutions. The algorithm maintains an externally finite-sized 
archive ( )tA  of non-dominated solutions which gets iteratively updated in the presence of new 
solutions based on the concept of ε -dominance 
 
5.3.2 Repair algorithm 
 
The idea of this technique is to separate any feasible individuals in a population from those that 
are infeasible by repairing infeasible individuals. This approach co-evolves the population of 
infeasible individuals until they become feasible. Repair process works as follows. Assume, there 
is a search point ω ∉ S  (where S is the feasible space). In such a case the algorithm selects one 
of the reference points (Better reference point has better chances to be selected), say ∈r S and 
creates random points Z  from the segment defined betweenω, r , but the segment may be 
extended equally on both sides determined by a user specified parameter [0,1]µ ∈ . Thus, a new 
feasible individual is expressed as: 
 

1

2

. (1 ) .
, (1 2 ) , [ 0 ,1]

(1 ) . .

z r

z r

γ ω γ
γ µ δ µ δ

γ ω γ
= + − 

= + − ∈= − + 
(9) 

 
5.3.3 Evolutionary algorithm: phase 1  
 
In the first phase, the proposed algorithm uses two separate population, the first population ( 0)=tP  
(where t is the iteration counter) consists of the individuals which initialized randomly satisfying 
the search space (The lower and upper bounds), while the second population (0)R consists of 
reference points which satisfying all constraints (feasible points). Also, it stores initially the 
Pareto-optimal solutions externally in a finite sized archive of non-dominated solutions(0)A . We 
use cluster algorithm to create the next population 1+tP , if ( ) ( )| | | |>t tP A  then new population

1+tP consists of all individual from ( )tA and the population ( )tP are considered for the clustering 
procedure to complete ( 1)tP + , if ( ) ( )| | | |<t tP A  then | |P  solutions are picked up at random from 

( )tA and directly copied to the new population ( 1)tP + . 
 
Since our goal is to find new nondominated solutions, one simple way to combine multiple 
objective functions into a scalar fitness function [26,27] is the following weighted sum approach  
 

1 1
1

( ) ( ) ... ( ) ... ( ) ( )
m

i i m m j j
j

f x w f x w f x w f x w f x
=

= + + + + =∑
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Where x is a string (i.e., individual), ( )f x  is a combined fitness function, ( )if x  is the ith 

objective function. When a pair of strings are selected for a crossover operation, we assign a 
random number to each weight as follows: 
 

1

(.)
,     1,2,..,

(.)

i
i m

j
j

random
w i m

random
=

= =
∑

                                                             

(11) 

 
Calculate the fitness value of each string using the random weights iw . Select a pair of strings 

from the current population according to the following selection probability ( )xβ of a string x in 

the population ( )tP  

( )

( )
( ) ( )min

min( )
min

( ) ( )
( ) ,   where ( ) min{ ( ) | }

{ ( ) ( )}
t

t
t t

t

x P

f x f P
x f P f x x P

f x f P
β

∈

−
= = ∈

−∑
               

(12) 

 
This step is repeated for selecting | | /2P  Paris of strings from the current populations. For each 
selected pair apply crossover operation to generate two new strings, for each strings generated by 
crossover operation, apply a mutation operator with a prespecified mutation probability. The 
system also includes the survival of some of good individuals without crossover or mutation. The 
algorithm maintains a finite-sized archivetA of non-dominated solutions which gets iteratively 
updated in the presence of a new solutions based on the concept of ε -dominance, such that new 
solutions are only accepted in the archive if they are not ε -dominated by any other element in the 
current archive .The use of ε -dominance also makes the algorithms practical by allowing a 
decision maker to control the resolution of the Pareto set approximation by choosing an 
appropriate ε  value. 
 
5.3.4 Local search mechanism inspired on rough sets theory: phase 2 
 
Upon termination of phase 1, we start phase2, with initial approximate of the Pareto front 
(provided by the proposed algorithm in phase1) which noted as NS. Also all dominated solutions 
are marked as DS. It is worth remarking that NS can simply be a list of solutions.  
 
From the set NS we choose NNS points previously unselected. If we do not have enough 
unselected points, we choose the rest randomly from the set DS. Next, we choose from the set NS, 
NDS points previously unselected ( and in the same way if we do not have enough unselected 
points, we complete them in a random fashion) these points will be used to approximate the 
boundary between  the Pareto front and the rest of the feasible set in decision variable space. We 
store theses points in the set Items and perform rough sets iterations: 
 

1- Range Initialization:  for each decision variablei , we compute and sort (from smallest 
and highest) the different values it takes in the set Items. Then, for each decision 
variable, we have a set of rang values and combining all these sets we have a non-

uniform grid in decision variable space. 
2- Compute Atoms: we compute “NNS rectangular atoms” centered in the NNS efficient 

points selected. To build a rectangular atom associated to a nondominated  point ex Items∈
we compute the following upper and lower bounds for each decision variable i : 
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• Lower Bound i : Middle point between e
ix and the previous value in the set 

irang  

• Upper Bound i : Middle point between e
ix and the following value in the set 

irang  

• If there are no pervious or subsequent values in irang , we consider the absolute 

lower or upper bound of variable i . This setting lets the method to explore close 
to the feasible set boundaries. 

3- Generate Offspring: inside each atom we randomly generate offspring new points. Each 
of these points is sent to the set NS to check if it is must be included as a new 
nondominated point. If any point in NS is dominated by this new point, it is sent to the 
set DS.  
Algorithm 2 shows the operator for ε-approximate Pareto set, the idea is that "new 
solutions are only accepted in the archive if they are not ε-dominated by any other 
element of the current archive". If a solution is accepted, all dominated solutions are 
removed. The pseudo code of the proposed algorithm is declared in Algorithm 3. 
 

Algorithm 2:  Operator for ε-approximate Pareto set  
1. : ,

2.     

3. 

4. 

5. { : }

6. { } \

7.  

8. :

INPUT A x

if x A such that x x then

A A

else

D x A x x

A A x D

end if

Output A

ε′ ′∃ ∈
′ =

′ ′= ∈
′ = ∪

′

f

f

 
 

Algorithm 3: The proposed algorithm(pseudo code of the proposed algorithm) 
t=0

(0) (0)
2. Create P ,

(0) (0)
3. min ( )

(t)
3.  terminate (A , )  do

4. 1

( ) ( 1) ( 1)
5. P ( , )                   {generate new search point}

( ) ( 1) ( )
6. ( , )    

R

A nondo ated P

while t false

t t

t t t
generate A P

t t t
A update A P

=

=

= +
− −=

−=

1

                    {update archive (algorithm 3)}

7.  

( )
8. :  

( )
8.  , Dominted Pointes DS

9. Compute "Atom"

10.Comput Upper Bound , Lower Boundi i

11.  new off

Phase

end while

t
Output A

t
A NS

Generate

→ →
















2

spring.

12. Update  NS set

13.  NS

Phase

Output








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6 Implementation of the Proposed Approach 
 
In order to validate the proposed approach and quantitatively compare its performance with other 
MOEAs, we present in this section comparison study applied to the standard IEEE 30-bus 6-
generator test system with two objective. The single-line diagram of this system is shown in Fig. 4 
and the detailed data are given in [7,28]. The values of fuel cost and emission coefficients are 
given in Table 1. For comparison purposes with the reported results, the system is considered as 
losses and the security constraint is released. The techniques used in this study were developed 
and implemented using MATLAB environment. Table 2 gives Reactive power limit and Voltage 
limits and Table 3 lists the parameter setting used in the algorithm for all runs. 
 

 
 

Fig. 4. Single line diagram of IEEE 30-bus 6-generator test system 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(20), 2978-2999, 2014 
 
 

2991 
 

Table 1. Generator fuel cost and emission coefficients 
 

Cost  G1 G2 G3 G4 G5 G6 
a 10 10 20 10 20 10 

 b 200 150 180 100 180 150 
 c 100 120 40 60 40 100 
Emission α  4.091 2.543 4.258 5.426 4.258 6.131 
 β  -5.554 -6.047 -5.094 -3.550 -5.094 -5.555 
 γ  6.490 4.638 4.586 3.380 4.586 5.151 

 ζ  2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5 
 λ  2.857 3.333 8.000 2.000 8.000 6.667 

 
Table 2. Reactive power limit and voltage limits 

 

Bus Voltage Reactive power 

minVi  maxVi  minQGi  maxQGi  
1 0.9 1.05 -0.2 2.0 
2 0.9 1.05 -0.2 2.0 
3 0.9 1.05 -0.2 2.0 
4 0.9 1.05 -0.2 2.0 
5 0.9 1.05 -0.2 2.0 
6 0.9 1.05 -0.2 2.0 

In Table,Qmin, Qmax, Vmin and Vmax are in (p.u) 
 

Table 3. The parameter setting of proposed algorithm 
 

Parameter Setting 
Population size 200 
No. of Generation 200 
Crossover probability cP  0.9 

Mutation probability mP  0.02 

Selection operator Roulette Wheel  
Crossover operator Single point 
Mutation operator Polynomial mutation 
Relative toleranceε  10e-6 

 

7 Results and Discussion 
 
Fig. 5 shows well-distributed Pareto optimal solutions obtained by the proposed algorithm after 
200 generations. It is clear from the figure that Pareto-optimal set is well distributed and has 
satisfactory diversity characteristics compared with Pareto-optimal front of the NPGA [9] and 
Pareto-optimal front of the SPEA [10]. 
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Fig. 5. Pareto-optimal front of the proposed approach 
 

Tables 4 and 5 show the best fuel cost and best NOx emission obtained by proposed algorithm as 

compared to Nondominated Sorting Genetic Algorithm (NSGA) [8], Niched Pareto Genetic 
Algorithm (NPGA) [9], Strength Pareto Evolutionary Algorithm (SPEA) [10] and IT-CEMOP 
[29]. It can be deduced that the proposed algorithm finds comparable minimum fuel cost and 

comparable minimum NOx emission to the four evolutionary algorithms.  

 
Table 4. Best total $/h fuel cost 

 
 NSGA NPGA SPEA IT-CEMOP  Proposed 

approach 

1GP  
0.1168 0..1245 0.1086 0.1739 0.928 

2GP  
0.3165 0.2792 0.3056 0.3578 0.2868 

3GP  
0.5441 0.6284 0.5818 0.5311 0.5159 

4GP  
0.9447 1.0264 0.9846 0.9790 0.9896 

5GP  
0.5498 0.4693 0.5288 0.4429 0.5803 

6GP  
0.3964 0.39993 0.3584 0.3725 0.3448 

Best cost. 608.245 608.147 607.807 606.4533 605.0820 
Corresponding 
Emission 

0.21664 0.22364 0.22015 0.2028 0.2206 

 
Convergence of fuel cost and emission objective functions are shown in Figs. 6 and 7. In the view 
of our results, the algorithm converges to the optimal solution as in Figs. 6 and 7, where the Cost 
of generating is converges to the optimal value, Also the Emissions of undesired materials is 
converges to the optimal value. 
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Table 5. Best total ton/h NOx  emission 

 
 NSGA NPGA SPEA IT-CEMOP  Proposed 

approach 

1GP  
0.4113 0.3923 0.4043 0.3885 0.4046 

2GP  
0.4591 0.4700 0.4525 0.4984 0.4611 

3GP  
0.5117 0.5565 0.5525 0.5167 0.5289 

4GP  
0.3724 0.3695 0.4079 0.4502 0.3874 

5GP  
0.5810 0.5599 0.5468 0.5205 0.5338 

6GP  
0.5304 0.5163 0.5005 0.5005 0.5014 

Best Emission. 0.19432 0.19424 0.19422 0.1882 0.1942 
Corresponding 
cost 

647.251 645.984 642.603 642.8976 643.3729 

 

 
 

Fig. 6. Convergence of fuel cost objective 
 

 
 

Fig. 7. Convergence emission objective 
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8 Identifying a Satisfactory Solution 
 
Optimization of the above-formulated objective functions using multiobjective genetic algorithms 
yields not a single optimal solution, but a set of Pareto optimal solutions, in which one objective 
cannot be improved without sacrificing other objectives. For practical applications, however, we 
need to select one solution, which will satisfy the different goals to some extent. Such a solution is 
called best compromise solution. TOPSIS (Technique for Order Preference by Similarity to Ideal 
Solution) method [20,21,30] has the ability to identify the best alternative from a finite set of 
alternatives quickly. 
 
8.1 The Idea of TOPSIS can be expressed in a Series of Steps: 
 

(1)  Obtain performance data for n alternatives over Mcriteriaxij  (i=1,….,n ,j=1,….,M). 

(2)  Calculate normalized rating (vector normalization is used)rij . 

(3)  Develop a set of importance weights Wj , for each of the criteria. The basis for these 

weights can be anything, but, usually, is ad hoc reflective of relative importance. 
 

.V w rij j ij=
                                                                        

(13) 

 

(4)  Identify the ideal alternative (extreme performance on each criterion) S+ . 

( ) ( ){ }{ , ,.., ,.., } max  v | , min  v | , 1,....,1 2 1 2ij ijS v v v v j J j J i nmj
+ + + + += = ∈ ∈ =

   
(14) 

 

Where 1J  is a set of benefit attributes and 2J  is a set of cost attributes. 

 

(5)  Identify the nadir alternative (reverse extreme performance on each criterion) S
−

. 
 

( ) ( ){ }{ , ,.., ,.. } min  v | , max  v | , 1,....,1 2 1 2ij ijS v v v v j J j J i nmj
− − − − −= = ∈ ∈ =

  
(15) 

 

(6)  Develop a distance measure over each criterion to both ideal (D
+ ) and nadir (D

− ). 
 

_2 2( ) ,                            ( )D v v D v vi ij j i ij jj j
+ + −= − = −∑ ∑

                

(16) 

 
(7)  For each alternative, determine a ratio R equal to the distance to the nadir divided by the 

sum of the distance to the nadir and the distance to the ideal, 
 

D
R

D D

−
= − ++                                                                 

(17) 
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(8)  Rank alternative according to ratio R (in Step 7) in descending order.  
(9) Recommend the alternative with the maximum ratio 

 
Therefore it can be said that TOPSIS method is attractive since limited subjective input (namely 
the weight values which reflect the degree of satisfactory of each objective) is needed from the 
DM to get a satisfactory results from the Pareto set quickly. Also, this method can be classified as 
interactive approach, where the DM specifies input values according his needs.  
 
Here, we need to select one solution (one operating point), which will satisfy the different goals to 
some extent. Such a solution is called best compromise solution. The identification of a best 
compromise solution requires taking into account the preferences expressed by the decision-maker 
DM, which reflect the degree of satisfactory of each objective. We incorporate relative weights of 

criterion importance as{ 0.2, w 0.8}1 2w = = , which give relative importance for fuel cost as 0.2 

and relative importance for NOx  emission objective as 0.8, the bigger the weighting factor, the 

more important is the attainment of that objective. 
 

In order to obtain the normalized rating, fuel cost( )1f ⋅ , and emission ( )2f ⋅  are optimized 

individually to obtain minimum values of the objectives. The minimum and maximum values of 
the objectives are given in Table 6 (Minimum values of the objectives are obtained by giving full 
consideration to one of the objectives and neglecting the others).  
 

Table 6. The minimum and maximum values of the objectives 
 

Objective Max Min 
Fuel cost ($) 643.3729 605.0802 
Emission (ton) 0.2206 0.1942 

 
For each alternative, determine a ratio R equal to the distance to the nadir divided by the sum of 
the distance to the nadir and the distance to the ideal as in step 7. Alternatives have been ranked 
by maximizing the ratio R. It is obvious that all set of solutions are ranked corresponding to the 
relative weights of criterion importance (degree of satisfactory)  
 
To declare the performance of changing the weights { , | 1}1 2 1 2w w w w+ =  on the best 

compromise solution, we plot different values of weight 1w  versus best compromise solution of 

( )1f ⋅  (Cost ($/h)  and versus best compromise solution of ( )2f ⋅  (Emission (ton/h) as in Fig. 8. It 

is obvious that for each weight (criterion importance), different best compromise solutions had 
found proportional to the criterion importance (weighting factor). 
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Fig. 8. Weight 1w versus best compromise cost and emission 

 

9 Conclusion 
 
The proposed approach presented in this paper was applied to Economic Emission Load Dispatch 
(EELD) problem which formulated as multiobjective optimization problem with competing fuel 
cost, and emission. The proposed algorithm operates in two Phases: in the first one, multiobjective 
version of genetic algorithm is used as search engine in order to generate approximate true Pareto 
front. This algorithm based on concept of co-evolution and repair algorithm. Also it maintains a 
finite-sized archive of nondominated solutions which gets iteratively updated in the presence of 
new solutions based on the concept of ε -dominance. Then in the second phase, rough set theory 
is adopted as local search engine in order to improve the spread of the solutions found so far. Our 
proposed approach keeps track of all the feasible solutions found during the optimization. The 
following are the significant contributions of this paper: 
 

1. The results prove superiority of the proposed approach to those reported in the literature. 
2. The non-dominated solutions in the obtained Pareto-optimal set are well distributed and 

have satisfactory diversity characteristics. 
3. The proposed approach is efficient for solving nonconvex multiobjective optimization 

where multiple Pareto-optimal solutions can be found in one simulation run. 
4. The proposed technique has been effectively applied to solve the EED considering two 

objectives simultaneously, with no limitation in handing more than two objectives. 
5. TOPSIS method is employed to extract the best compromise solution from the trade-off 

curve according to the determined weight factor, the bigger the weight factor, the more 
important is the attainment of that objective. 
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