

# **Clonidine Inhibits Phenylephrine-Induced Contraction of Rat Thoracic Aortae by** Competitive Antagonism of $\alpha_1$ -Adrenoceptors Independent of $\alpha_2$ -Adrenoceptor Stimulation

## Daisuke Chino, Mai Naramatsu, Keisuke Obara, Yoshio Tanaka\*

Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan Email: \*yotanaka@phar.toho-u.ac.jp

How to cite this paper: Chino, D., Naramatsu, M., Obara, K. and Tanaka, Y. (2017) Clonidine Inhibits Phenylephrine-Induced Contraction of Rat Thoracic Aortae by Competitive Antagonism of a1-Adrenoceptors Independent of a2-Adrenoceptor Stimulation. Pharmacology & Pharmacy, 8, 172-188. https://doi.org/10.4236/pp.2017.85012

Received: February 17, 2017 Accepted: May 19, 2017 Published: May 22, 2017

Copyright © 2017 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/ **Open Access** 



Abstract

Clonidine is a classically categorized  $a_2$ -adrenoceptor ( $a_2$ -AR) agonist that produces vascular contractions by stimulating arterial smooth muscle  $\alpha_2$ -ARs. However, clonidine inhibits  $a_1$ -AR-mediated arterial contractions. Recently, it was suggested that repeated stimulation with clonidine induces desensitization of  $\alpha_2$ -ARs, thus inhibiting noradrenaline-induced smooth muscle contractions. In the present study, we examined whether clonidine-mediated inhibition of  $a_1$ -AR contractions involves interactions with  $a_2$ -ARs in rat thoracic aortae. 1) Clonidine and guanfacine inhibited electrical field stimulation-induced contractions in a concentration-dependent, yohimbine-sensitive manner in isolated rat vas deferens preparations. 2) Clonidine almost completely suppressed phenylephrine-induced sustained contractions of rat thoracic aortae. 3) Clonidine competitively inhibited phenylephrine-induced contractions with a p $A_2$  value of 6.77 at concentrations between  $10^{-7}$  and  $10^{-6}$  M. At 10<sup>-5</sup> M, clonidine inhibited phenylephrine-induced contractions and dramatically reduced maximum contractions. 4) In contrast, clonidine did not inhibit contractions produced by high KCl or prostaglandin  $F_{2a}$ . 5) Inhibition of phenylephrine-induced sustained contractions by clonidine was also produced in the presence of yohimbine. However, guanfacine did not inhibit phenylephrine-induced sustained contractions. These findings suggest that clonidine inhibits phenylephrine-induced contraction of rat thoracic aortae by competitive antagonism of  $a_1$ -ARs, which is mediated through a mechanism independent of  $a_2$ -AR stimulation.

## **Keywords**

Clonidine,  $a_2$ -Adrenoceptor ( $a_2$ -AR),  $a_1$ -Adrenoceptor ( $a_1$ -AR), Rat Aorta, Relaxation

#### **1. Introduction**

Clonidine is classically classified as a selective  $a_2$ -adrenoceptor ( $a_2$ -AR) agonist [1]. Clonidine has been used clinically to treat high blood pressure, particularly in severe cases in which other fundamental antihypertensive drugs such as calcium antagonists do not result in improved symptoms. In addition, clonidine is used as a pre-anesthetic medication for various surgeries. Underlying mechanisms of clonidine-induced hypotensive effects include reduction of efferent sympathetic nerve activities, attributable to clonidine-mediated stimulation of  $a_2$ -ARs in central nerves (vasomotor centers in bulbar), though  $a_2$ -ARs are also present peripherally [2].

Clonidine was first regarded as a presynaptic  $a_2$ -AR agonist that suppresses the release of noradrenaline (NA) from sympathetic nerve endings by stimulating presynaptic  $a_2$ -ARs [3] [4]. More recently, it has been shown that clonidine also targets postsynaptic  $a_2$ -ARs, and clonidine-induced vascular contractions are explained by the stimulation of vascular smooth muscle  $a_2$ -ARs [5] [6] [7]. Further, experimental evidence suggests possible interactions between clonidine and  $a_1$ -ARs, and it has been suggested that clonidine acts as a partial agonist for  $a_1$ -ARs. In vascular smooth muscles, clonidine causes contractile effects by directly stimulating  $a_1$ -ARs and competitive antagonistic effects against full agonists, including NA [5] [6] [8]. However, it is generally recognized that the effects of clonidine on  $a_1$ -ARs are generated through different mechanisms than those on  $a_2$ -ARs, and these effects are produced independently.

It has been suggested that  $a_1$ -ARs cross-talk with other drug receptors such as bradykinin B<sub>2</sub> receptors, endothelin-1 (ET<sub>A</sub>) receptors, and lysophosphatidic acid (LPA) receptors [9]. Although there are few studies examining possible crosstalk between  $a_2$ -ARs and  $a_1$ -ARs, it has been shown that NA-induced contractions decrease as a result of clonidine-induced desensitization of  $a_2$ -ARs in testicular capsules [10]. Based on this background information, we hypothesized that clonidine inhibits  $a_1$ -AR-mediated contractions by stimulating  $a_2$ -ARs; clonidine-induced inhibition of  $a_1$ -AR-mediated contractions results from stimulation of  $a_2$ -ARs.

Clonidine strongly inhibits phenylephrine-induced contractions in isolated rat thoracic aorta smooth muscles; therefore, the present study was carried out to determine whether this is mediated through stimulation of  $a_2$ -ARs.

#### 2. Materials and Methods

#### 2.1. Drugs and Chemicals

The following drugs were used: clonidine and phenylephrine (Sigma-Aldrich Co., MO, USA); guanfacine (Enzo Life Sciences, NY, USA); NA and yohimbine (Wako Pure Chemical Industries, Osaka, Japan); prostaglandin  $F_{2a}$  (PGF<sub>2a</sub>) (Fuji Pharma Co., Ltd, Tokyo, Japan); acetylcholine (ACh) and tetrodotoxin (TTX) (Daiichi Sankyo, Tokyo, Japan). All other chemicals used in the present study were commercially available and of reagent grade.

All drugs were prepared as an aqueous solution and diluted with distilled water.

#### 2.2. Animals

Male Wistar rats (8 - 9 weeks old, weighing 190 - 230 g, Sankyo Labo Service, Tokyo, Japan) were housed under controlled conditions (temperature  $20^{\circ}$ C - $22^{\circ}$ C, relative air humidity  $50\% \pm 5\%$ , fixed 12 h-light [08:00 h to 20:00 h]/12 h-dark cycle). Food and water were available *ad libitum* to all animals. This study was conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals of the Toho University School of Pharmaceutical Sciences, which is accredited by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

#### 2.3. Preparation of Rat Aortic Rings

Wistar rats were sacrificed by cervical dislocation, and a section of the thoracic aorta from between the aortic arch and the diaphragm was isolated and placed in normal Tyrode's solution (158.3 mM NaCl, 4.0 mM KCl, 2.0 mM CaCl<sub>2</sub>, 1.05 mM MgCl<sub>2</sub>, 0.42 mM NaH<sub>2</sub>PO<sub>4</sub>, 10.0 mM NaHCO<sub>3</sub>, and 5.6 mM glucose). The aortae were cleaned of loosely adhering fat and connective tissue and cut into ring segments of approximately 2 mm in length. The aortic rings were stripped of endothelium by gently rubbing the intimal surface with an eyebrow brush.

#### 2.4. Measurement of Tension Changes in Rat Aortae

The aortic rings were mounted using stainless steel hooks in 5-ml organ bath chambers (UC-5; UFER Medical Instrument, Kyoto, Japan) containing normal Tyrode's solution at 35°C  $\pm$  1°C (pH 7.4) and continuously bubbled with 95% (v/v) O<sub>2</sub> and 5% (v/v) CO<sub>2</sub>. Changes in tension were isometrically measured with a force-displacement transducer (T7-8-240; Orientec, Tokyo, Japan) connected to a minipolygraph (Signal Conditioner: Model MSC-2; Primetech Corp., Tokyo, Japan). The data were recorded on a computer with PowerLab/ML-846<sup>TM</sup> and Chart<sup>TM</sup> (Version 7.0) software (ADInstruments Japan, Tokyo, Japan). During an equilibration period of 60 min, the bathing solution (normal Tyrode's solution) was changed every 20 min and the aortic rings were subjected to a tension of 1.0 g.

The rings were challenged with high-KCl (8  $\times$  10<sup>-2</sup> M) Tyrode's solution, which was prepared by replacing the NaCl with an equimolar amount of KCl at least twice until a reproducible maximal contractile response was obtained. The absence of endothelium was confirmed by the lack of relaxation in response to acetylcholine ACh (10<sup>-5</sup> M) in the aortic rings pre-contracted with NA (10<sup>-7</sup> M). After this procedure, preparations without functional endothelium were left to equilibrate for at least 40 min.

#### 2.5. Experimental Procedure

Aortic ring preparations were pre-contracted with phenylephrine  $(3 \times 10^{-7} \text{ M})$ , PGF<sub>2a</sub> (10<sup>-5</sup> M), or high-KCl (4 × 10<sup>-2</sup> M) Tyrode's solution, which was prepared

by substituting NaCl with an equimolar amount of KCl to produce sustained contractions. After muscle contractions reached a steady-state level, clonidine  $(10^{-9} - 10^{-5} \text{ M})$  was cumulatively applied to the bath medium. Effects of the cumulative addition of guanfacine  $(10^{-9} - 10^{-5} \text{ M})$  on phenylephrine  $(3 \times 10^{-7} \text{ M})$ -induced contractions were examined using separate preparations.

In a separate series of experiments, the antagonistic effects of clonidine on phenylephrine-induced contractions were examined. Specifically, clonidine  $(10^{-7}, 10^{-6}, \text{ or } 10^{-5} \text{ M})$  was added to the bath medium 20 min before the cumulative addition of phenylephrine  $(10^{-9} - 10^{-4} \text{ M})$ . Moreover, to investigate possible involvement of  $\alpha_2$ -ARs in the antagonism of phenylephrine-induced contractions by a high concentration of clonidine, yohimbine  $(10^{-5} \text{ M})$  or its vehicle (distilled water) was added to the bath medium 20 min before phenylephrine  $(10^{-6} \text{ M})$ . After the phenylephrine-induced muscle contractions reached a steady-state level, clonidine  $(10^{-5} \text{ M})$  was applied to the bath medium.

#### 2.6. Measurement of Tension Changes in Response to Nerve Electrical Field Stimulation (EFS) in Rat Vas Deferens

Wistar rats were sacrificed by cervical dislocation, and both right and left vas deferens were isolated. Each vas deferens was mounted between stimulating electrodes made of platinum using a cotton thread, with an optimal resting tension of 1.0 g; samples were maintained in a 20-ml organ bath containing normal Tyrode's solution continuously gassed with 95%  $O_2$ , 5%  $CO_2$ , and kept at 35°C ±  $1.0^{\circ}$ C (pH = 7.4). Changes in vas deferens smooth muscle (VDSM) tension were isometrically recorded with a force-displacement transducer (TB-612T; Nihon Kohden, Tokyo, Japan) connected to an amplifier (AP-621G; Nihon Kohden, Tokyo, Japan) and recorded with PowerLab2/26<sup>TM</sup> and Chart<sup>TM</sup> (Version 7.0) software (ADInstruments Japan Inc., Nagoya, Japan). Before starting the experiment, the preparations were equilibrated for 60 min with fresh bathing solution (normal Tyrode's solution) that was exchanged every 20 min. To ensure that preparations were capable of generating normal contractile responses after equilibrating, they were contracted with high-KCl ( $8 \times 10^{-2}$  M) Tyrode's solution and then contracted twice with NA (10<sup>-6</sup> M), which was subsequently washed out when the maximum contraction was recorded. When VDSM tension returned to basal levels, a train of 100-usec square pulses of supramaximal intensity (50 V) was applied transmurally at a frequency between 2 and 16 Hz for 5 sec. The stimulus pulses were delivered by an electronic stimulator (SEN-3301, Nihon Kohden Corporation, Tokyo, Japan). The interval between EFS pulses was at least 3 min. When frequency-dependent contractions to EFS were obtained, clonidine (10<sup>-8</sup> - 10<sup>-7</sup> M) or guanfacine (10<sup>-9</sup> - 10<sup>-8</sup> M) was cumulatively added at 10-min intervals before the next series of frequency-dependent EFS pulses. The antagonistic action of yohimbine (10<sup>-6</sup> M) was assessed by examining its effect on clonidine- or guanfacine-induced inhibition. The neurogenic characteristics of constrictor responses to EFS were confirmed at the end of every experiment by the abolition of responses in the presence of TTX ( $3 \times 10^{-7}$  M).

## 2.7. Evaluation and Statistical Analysis

The relative relaxation of  $a_2$ -AR agonists (clonidine and guanfacine) on sustained vascular contractions is expressed as percent relaxation; the tension level just before adding the agonists was considered 0% relaxation, and the basal tension level before applying vasoconstrictor stimulations (phenylephrine, PGF<sub>2m</sub> or high KCl) was considered 100% relaxation. To construct control concentration-response curves (CRCs) for phenylephrine, percent contractions were calculated by using the tension level before the cumulative application of phenylephrine as 0% and the maximum contraction obtained with application of high KCl ( $8 \times 10^{-2}$  M) as 100% for each preparation.

EC<sub>50</sub> and E<sub>max</sub> values were defined as the concentration required to produce a 50% response and maximal response induced by phenylephrine, respectively.  $EC_{50}$  values were converted to logarithmic values (p $D_2$ ,  $-logEC_{50}$ ) for statistical analysis. Competitive antagonistic potency is expressed as a  $pA_2$  value determined from a Schild plot analysis of the results [11].

The data are expressed as means ± S.E.M. or 95% confidence intervals (CIs); n refers to the number of experiments. Statistical analysis was performed with the unpaired student's t-test or one-way analysis of variance (one-way ANOVA) followed by Dunnett's multiple comparison test using GraphPad Prism<sup>™</sup> (version 7.00; GraphPad Software, San Diego, C.A., USA). A P value < 0.05 was considered significant in all cases.

#### 3. Results

## 3.1. Inhibitory Effects of Clonidine on EFS-Induced Rat Vas **Deferens Contractions and the Antagonistic Effects of Yohimbine vs. Clonidine**

Figure 1 shows the effects of clonidine on EFS-induced contractions in rat vas deferens in the absence and presence of yohimbine. EFS evoked frequency (2 -16 Hz)-dependent contractions in rat vas deferens (Figure 1 control). These contractions were neurogenic, but not myogenic-as they were completely abolished in the presence of TTX  $(3 \times 10^{-7} \text{ M})$  (data not shown). Clonidine suppressed EFS-induced vas deferens contractions in a concentration-dependent manner ( $10^{-8} - 10^{-7}$  M); statistical significance was determined for  $3 \times 10^{-8}$  M vs. 2 Hz and 4 Hz contractions (P < 0.05) and  $10^{-7}$  M vs. 2 to 16 Hz contractions (P< 0.05 for 2, 4, and 16 Hz and *P* < 0.01 for 8 Hz) (Figure 1(B)). In contrast, suppressed contractions attributable to clonidine (10<sup>-7</sup> M) strongly recovered in the presence of yohimbine (10<sup>-6</sup> M); thus, there were no statistical significances between control contractions and contractions in the presence of clonidine plus vohimbine.

## 3.2. Inhibitory Effects of Guanfacine on EFS-Induced Vas Deferens Contractions and the Antagonistic Effects of Yohimbine vs. Guanfacine

Figure 2 shows the effects of guanfacine on EFS-induced contractions in rat vas





**Figure 1.** The effects of clonidine and subsequently-applied yohimbine on electrical field stimulation (EFS)-induced contractions in rat vas deferens. (A): A typical trace showing EFS-induced contractions and the effects of clonidine  $(10^{-8} - 10^{-7} \text{ M})$  and yohimbine  $(10^{-6} \text{ M})$ . EFS was transmurally applied at a frequency between 2 and 16 Hz for 5 sec with a train of 100-µsec square pulses of supramaximal intensity (50 V). (B): Summarized data showing the results illustrated in **Figure 1(A)**. Data are shown as mean values ± S.E.M. (n = 3 for each). \**P* < 0.05, \*\**P* < 0.01 vs. control.

deferens in absence and presence of yohimbine. Similar to clonidine, guanfacine suppressed EFS-induced vas deferens contractions (2 - 16 Hz) in a concentration-dependent manner ( $10^{-9} - 10^{-8}$  M); however, the inhibitory potency of guanfacine was greater than that of clonidine. Suppressed contractions recovered in the presence of yohimbine ( $10^{-6}$  M) and guanfacine ( $10^{-8}$  M).

## 3.3. Inhibitory Effects of Clonidine on Phenylephrine-Induced Contractions

**Figure 3** shows the effects of cumulative clonidine applications on phenylephrine-induced sustained contractions of rat thoracic aortae. Clonidine  $(10^{-9} - 10^{-5} \text{ M})$  inhibited phenylephrine  $(3 \times 10^{-7} \text{ M})$ -induced contractions in a concentration-dependent manner (**Figure 3(A**)). The Emax and p $D_2$  values for clonidine were calculated as 97.9%  $\pm$  0.6% and 6.88  $\pm$  0.08 (n = 4) (**Figure 3(B**)).



Figure 2. The effects of guanfacine and subsequently-applied yohimbine on electrical field stimulation (EFS)-induced contractions in rat vas deferens. (A): A typical trace showing EFS-induced contractions and the effects of guanfacine ( $10^{-9} - 10^{-8}$  M) and yohimbine ( $10^{-6}$  M). The EFS conditions were the same as Figure 1. (B): Summarized data showing the results illustrated in Figure 2(A). Data are shown as mean values  $\pm$  S.E.M. (n = 3 for each). \**P* < 0.05, \*\**P* < 0.01 vs. control.

Figure 4(A) shows the effects of clonidine on phenylephrine CRCs when applied cumulatively. Clonidine (10<sup>-7</sup> - 10<sup>-6</sup> M) resulted in a shift of the phenylephrine CRC to the right. The inhibitory effects of clonidine on the phenylephrine CRC are likely attributable to competitive antagonism since the regression line slope  $(1.01 \pm 0.24)$  from the Schild plot analysis was not significantly different from that of unity (Figure 4(B)). The  $pA_2$  value for clonidine was calculated as 6.77 (6.48 - 7.32, n = 4) (Figure 4(B)). In contrast, clonidine (10<sup>-5</sup> M) dramatically shifted the phenylephrine CRC to the right and strongly reduced the Emax value from 96.9%  $\pm$  1.2% to 39.8%  $\pm$  5.5% (n = 4 for each, P < 0.05).

## 3.4. Inhibitory Effects of Clonidine on PGF<sub>2 $\alpha$ </sub> or 40 mM **KCl-Induced Contractions**

Figure 5(Aa), Figure 5(Ab) show the effects of clonidine on  $PGF_{2a}$ -induced contractions. Clonidine did not inhibit  $PGF_{2a}$  (10<sup>-5</sup> M)-induced contractions at concentrations up to 10<sup>-5</sup> M. Figure 5(Ba), Figure 5(Bb) shows the effects of





**Figure 3.** The inhibitory effects of clonidine on phenylephrine-induced contractions in rat thoracic aortae without endothelium. (A): A typical trace showing the effects of cumulatively applied clonidine  $(10^{-9} - 10^{-5} \text{ M})$  on a rat aorta precontracted with phenylephrine  $(3 \times 10^{-7} \text{ M})$ . Please note that Arabic numerals appearing in the figure are the negative logarithm of clonidine concentrations. (B): Concentration-response curves for the relaxant effects of clonidine on phenylephrine-induced contractions. Relative relaxation is expressed as percent reversal of phenylephrine-induced sustained tension development just before applying clonidine. Data are shown as mean values  $\pm$  S.E.M. (n = 4 for each). When no error bar is shown, the error is smaller than the symbol.

clonidine on contractions induced by high concentrations of KCl (40 mM). Clonidine did not inhibit 40 mM KCl- induced contractions at concentrations up to  $10^{-5}$  M. Clonidine produced additional tension development upon pre-contractions induced by PGF<sub>2a</sub> ( $10^{-5}$  M) and high (40 mM)-KCl (**Figure 5**). The additional contractions induced by clonidine were speculated to be mediated through  $a_2$ -AR since they were abolished by yohimbine (data not shown). However, we did not analyze this phenomenon any further because this study focuses on the relaxant effects of clonidine.

# 3.5. Effects of Yohimbine at High Concentrations on Clonidine-Associated Suppression of Phenylephrine-Induced Contractions

In this series of experiments, we used phenylephrine at 10<sup>-6</sup> M to obtain sustained



**Figure 4.** The antagonistic effects of clonidine on phenylephrine-induced contractions in rat thoracic aortae without endothelium. (A): Concentration-response curves for phenylephrine in the absence and presence of varied concentrations of clonidine; control (open circles),  $10^{-7}$  M (closed circles),  $10^{-6}$  M (closed triangles), and  $10^{-5}$  M (closed squares). Contractile responses to phenylephrine are expressed as a percentage of phenylephrine ( $10^{-5}$  M)-induced contractions in the absence of clonidine. Data are shown as mean values  $\pm$  S.E.M. (n = 4 for each). When no error bar is shown, the error is smaller than the symbol. (B): Schild plot analyses [11] carried out for clonidine against the effects of phenylephrine. Data are obtained from Figure 4(A).



**Figure 5.** The effects of clonidine on  $PGF_{2a}$  (A)- or high KCl (B)-induced contractions in rat thoracic aortae without endothelium. (Aa), (Ba): A typical trace showing the effects of cumulatively adding clonidine ( $10^{-7} - 10^{-5}$  M) on the vasoconstriction elicited by  $PGF_{2a}$  ( $10^{-5}$  M) (Aa) or high (40 mM)-KCl (Ba). (Ab), (Bb): Concentration-response curves for clonidine-induced relaxation in pre-contracted thoracic aortae by  $PGF_{2a}$  (Ab) or high KCl (Bb). Relative relaxation is expressed as percent reversal of  $PGF_{2a}^{-2}$  or high KCl-induced sustained tension development just before applying clonidine. Data are shown as mean values  $\pm$  S.E.M. (n = 3 for each). When no error bar is shown, the error is smaller than the symbol. Please note that Arabic numerals appearing in the figure are the negative logarithm of clonidine concentrations.

pre-contractions; stable and sustained contractions were not generated by  $3 \times 10^{-7}$  M phenylephrine, attributable to its antagonistic actions against  $a_1$ -AR. Clonidine ( $10^{-5}$  M) almost completely suppressed phenylephrine-induced contractions both in the absence and presence of yohimbine ( $10^{-6}$  M) (**Figure 6(A)**); there were no statistically significant differences between the two responses (**Figure 6(B)**).



Figure 6. Pretreatment effects of yohimbine on the antagonistic effects of a high concentration of clonidine on phenylephrine-induced contractions in rat thoracic aortae without endothelium. (A): Typical traces showing the inhibitory effects of clonidine (10<sup>-5</sup> M) on phenylephrine (10<sup>-6</sup> M)-contracted aortae in the presence of yohimbine (10<sup>-6</sup> M) (lower) or its vehicle (distilled water) (upper). (B): Summarized data showing the effects of yohimbine on the clonidine-induced relaxation illustrated in Figure 6(A). Relative relaxation is expressed as percent reversal of phenylephrine-induced sustained tension development just before applying clonidine. Data are shown as mean values  $\pm$  S.E.M. (n = 4 for each).

## 3.6. Effects of Guanfacine on Phenylephrine-Induced Contractions

Figure 7 shows the effects of guanfacine on phenylephrine-induced sustained contractions of rat thoracic aortae. Guanfacine did not inhibit phenylephrine (3  $\times 10^{-7}$  M)-induced contractions at concentration up to  $10^{-5}$  M.





**Figure 7.** The effects of guanfacine on phenylephrine-induced contractions in rat thoracic aortae without endothelium. (A): A typical trace showing the effects of cumulatively adding guanfacine  $(10^{-9} - 10^{-5} \text{ M})$  on phenylephrine-elicited vasoconstriction  $(3 \times 10^{-7} \text{ M})$ . Please note that Arabic numerals appearing in the figure are the negative logarithm of guanfacine concentrations. (B): Concentration-response curves for guanfacine-mediated relaxation in thoracic aortae pre-contracted with phenylephrine. Relative relaxation is expressed as percent reversal of phenylephrine-induced sustained tension development just before applying clonidine. Data are shown as mean values  $\pm$  S.E.M. (n = 4 for each). When no error bar is shown, the error is smaller than the symbol.

#### 4. Discussion

This study examined the possibility that stimulation of  $a_2$ -ARs and subsequent interactions with  $a_1$ -ARs are involved in clonidine-associated inhibition of  $a_1$ -AR-mediated phenylephrine-induced contractions of rat thoracic aortae. Our results show that at high concentrations (10<sup>-5</sup> M), clonidine suppresses phenylephrine-induced contractions in a non-competitive-like manner, while at lower concentration ranges (10<sup>-7</sup> - 10<sup>-6</sup> M), clonidine shows competitive antagonism against the effects of phenylephrine. However, clonidine-induced inhibition of

phenylephrine effects was produced under yohimbine inhibition of  $\alpha_2$ -ARs and guanfacine, another *a*,-AR inhibitor, did inhibit the effects of phenylephrine. Based on these findings, we suggest that stimulation of  $a_2$ -ARs and subsequent interactions with  $a_1$ -ARs are not mediated by the inhibitory effects of clonidine on  $\alpha_1$ -AR-mediated contractions in rat aortae.

Clonidine, an  $\alpha_2$ -AR stimulant, has been used as a central antihypertensive drug to treat hypertension. The hypotensive effects of clonidine are produced through suppression of sympathomimetic nerves and the relative superior activation of parasympathetic nerves resulting from stimulation of  $a_2$ -ARs in the pons and medulla oblongata [12]. Therefore, suppressed NA release from sympathetic nerves is thought to be insignificant. In contrast, clonidine produces contractile responses in peripheral smooth muscle tissues. A plausible explanation for clonidine-induced vascular contractions is that clonidine acts as a partial agonist on both  $\alpha_1$ -ARs and  $\alpha_2$ -ARs [5] [8]. As such, transient elevations in blood pressure by a bolus injection of clonidine can be explained by clonidinestimulated  $a_2$ -ARs,  $a_1$ -ARs, or both receptor subtypes.

As mentioned above, clonidine inhibits  $a_1$ -AR-mediated contractions induced by NA or phenylephrine in endothelium-denuded artery preparations, while it produces arterial contractions through agonistic activity for  $a_1$ -ARs and  $a_2$ -ARs. These data suggest that clonidine acts as an  $a_1$ -AR partial agonist, which is likely the mechanism underlying the inhibitory effects of clonidine on  $\alpha_1$ -AR-mediated arterial contractions [5] [6] [13]. Further,  $\alpha_1$ -AR-mediated contractions are not completely inhibited by high concentrations  $(10^{-5} - 10^{-4} \text{ M})$  of clonidine. Rather, part of the contractile component remains unaffected, providing experimental evidence for the above explanation. In contrast to previous reports, our present study shows that clonidine inhibits phenylephrine-induced contractions of endothelium-denuded rat aortae in a concentration-dependent manner. Further,  $10^{-5}$  M clonidine almost completely abolished the contractions (Figure 3(B)). This finding suggests that the inhibitory effects of clonidine on phenylephrineinduced contractions cannot be entirely explained by its partial agonist action on  $\alpha_1$ -ARs, but that additional effects should be taken into account. Therefore, in the present study we continued to clarify other plausible factors contributing to the inhibitory effects of clonidine on phenylephrine-induced contractions in rat thoracic aortae.

We examined the effects of clonidine on phenylephrine CRCs and carried out Schild plot analyses. The inhibitory effects of clonidine at concentrations of 10<sup>-7</sup> - 10<sup>-6</sup> M on phenylephrine activity are attributable to competitive antagonism on  $\alpha_1$ -ARs, as demonstrated by no significant differences between the regression line slope (1.01) from the Schild plot analysis and that of unity. Further, the  $pA_2$ value was calculated to be 6.77 (Figure 4(B)), which is consistent with a previously reported value (6.7) against  $a_1$ -ARs ( $a_{1B}$ -ARs) [14]. Therefore, the inhibitory effects of clonidine at concentrations of 10<sup>-7</sup> - 10<sup>-6</sup> M are likely mediated through competitive antagonism of phenylephrine on  $a_{1B}$ -ARs. In contrast, clonidine (10<sup>-5</sup> M) inhibited phenylephrine-induced contractions with strong sup-



pression of the maximum response, suggesting the possible involvement of noncompetitive antagonism-like inhibitory mechanisms. However, clonidine did not show any inhibitory effects against high KCl- and PGF<sub>2a</sub>-induced contractions. Therefore, the inhibitory effects of clonidine at high concentrations (10<sup>-5</sup> M) are not likely mediated through non-specific actions such as phosphodiesterase inhibition, but rather through inhibitory effects associated with *a*-AR (*a*<sub>1</sub>-ARs, *a*<sub>2</sub>-ARs, or both *a*<sub>1/2</sub>-ARs) mechanisms.

Although several mechanisms appear to account for the inhibitory effects of clonidine at high concentration ( $10^{-5}$  M) on the effects of phenylephrine, we suggest that clonidine desensitizes  $\alpha_1$ -ARs, thus suppressing phenylephrine-induced contractions.

The  $\alpha_{1B}$ -AR and  $\alpha_{1D}$ -AR subtypes primarily mediate arterial contractions induced by endogenous catecholamines, and chemically synthesized  $a_1$ -AR agonists such as phenylephrine are primarily mediated by these  $a_1$ -AR subtypes [15] [16]. Further,  $\alpha_{1B}$ -ARs are reportedly desensitized by phosphorylation through cross-talk upon stimulation of other drug receptors with bradykinin, endothelin, transforming growth factor (TGF)- $\beta$ , and LPA [9]. Among these drug receptors, the LPA receptor is classified as a Gi-protein-coupled receptor and induces desensitization of  $a_{1B}$ -ARs when phosphorylated through activation of phosphatidylinositol-3 kinase (PI3K) and protein kinase C (PKC) [9]. The  $a_2$ -ARs expressed in rat aortic smooth muscle cells [17] are also Gi-protein coupled receptors and stimulation causes activation of PI3K and PKC [18]. Therefore, it is plausible that stimulation of  $a_2$ -ARs with clonidine desensitizes  $a_{1B}$ -ARs through cross-talk between  $a_{1B}$ -ARs and  $a_2$ -ARs. Based on these studies, we hypothesized that stimulation of  $a_2$ -ARs with high concentrations of clonidine would induce desensitization of  $a_{1B}$ -ARs, consequently inhibiting phenylephrine-induced contractions in rat thoracic aortae.

To verify this hypothesis, we examined whether the inhibitory effects of high concentrations of clonidine on phenylephrine-induced contractions could be attenuated by inhibiting  $a_2$ -ARs with yohimbine. Previously, we confirmed the stimulating effects of clonidine and guanfacine on  $a_2$ -ARs and the inhibitory effects of yohimbine on  $a_2$ -ARs using a rat vas deferens preparation. Our results show that clonidine (10<sup>-8</sup> - 10<sup>-7</sup> M) and guanfacine (10<sup>-9</sup> - 10<sup>-8</sup> M) inhibit EFSinduced contraction of rat vas deferens in a concentration-dependent manner, and their inhibitory effects are reduced in the presence of yohimbine (10<sup>-6</sup> M) (Figure 1, Figure 2). Therefore, the  $a_2$ -AR-stimulating effects of clonidine and guanfacine, as well as the  $a_7$ -AR-inhibitory effects of yohimbine (10<sup>-6</sup> M) were verified. In contrast, clonidine (10<sup>-5</sup> M) inhibited phenylephrine-induced contractions in both the absence and presence of yohimbine (Figure 6(A), Figure **6(B)**). Furthermore, guanfacine, another  $a_2$ -AR agonist, did not inhibit phenylephrine- induced contractions (Figure 7(A), Figure 7(B)). Based on these findings, it is likely that inhibition of phenylephrine-induced contractions of rat thoracic aortae by high concentrations (10<sup>-5</sup> M) of clonidine is not mediated through  $a_2$ -ARs. Therefore, it seems unlikely that stimulation of  $a_2$ -ARs induces desensitization of  $\alpha_1$  ( $\alpha_{1B}$ )-ARs through cross-talk in arterial smooth muscle.

The mechanisms by which high concentrations of clonidine inhibit phenylephrine-induced contractions in a noncompetitive manner remain to be determined. Nevertheless, it is thought that the inhibitory mechanisms are selective for a-ARs ( $a_1$ -AR,  $a_2$ -AR, or both a-ARs) and the related processes, since high concentrations (10<sup>-5</sup> M) of clonidine do not inhibit high KCl- and PGF<sub>2a</sub>-induced contractions. It is possible that high (10<sup>-5</sup> M) concentrations of clonidine inhibit phenylephrine-induced contractions by directly desensitizing  $\alpha_1$ -ARs without mediating  $\alpha_2$ -AR activity. However, if clonidine is solely an  $\alpha_1$ -AR antagonist, high concentrations would not desensitize the  $\alpha_1$ -ARs. As such, clonidine at high concentrations (10<sup>-5</sup> M) likely has dual actions as an  $\alpha_1$ -AR agonist and antagonist.

Finally, results of this study are clinically significant. Guanfacine is not used for hypertension in Japan, whereas clonidine is still employed as an antihypertensive drug-though it is not currently ranked as high as it has been in the past. The clinical usefulness of clonidine is supported by the idea that it acts as an  $\alpha_1$ -AR competitive antagonist, whereas guanfacine does not, as shown in this study. Clonidine is still used as an  $a_2$ -AR agonist in basic pharmacological studies; however, our study indicates that studies using relatively high concentrations of clonidine should be very carefully interpreted, as it inhibits  $a_1$ -AR-mediated contractions at concentrations as low as  $10^{-7}$  M.

#### **5.** Conclusion

In this study, we examined whether clonidine-mediated inhibition of phenylephrine-induced contractions in rat thoracic aortae involves stimulation of  $a_2$ -ARs and the subsequent inhibition of  $a_1$ -ARs. However, no evidence was observed to indicate that stimulation of  $a_2$ -ARs and subsequent interactions with  $\alpha_1$ -ARs mediates the inhibitory effects of clonidine on phenylephrine activity. The inhibitory effects of clonidine on phenylephrine activity in rat aortae are unlikely to involve mediation of  $a_2$ -ARs; however, these effects may be produced by direct inhibitory action on  $\alpha_1$ -ARs.

### Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing.

#### **Competing Interests**

The authors declare that they have no competing interests.

#### References

- Timmermans, P.B. and van Zwieten, P.A. (1981) Mini-Review. The Postsynaptic a2-Adrenoreceptor. Journal of Autonomic Pharmacology, 1, 171-183. https://doi.org/10.1111/j.1474-8673.1981.tb00509.x
- [2] de Jonge, A., Timmermans, P.B. and van Zwieten, P.A. (1981) Participation of Cardiac Presynaptic  $a_1$ -Adrenoceptors in the Bradycardiac Effects of Clonidine and



Analogues. *Naunyn-Schmiedeberg's Archives of Pharmacology*, **317**, 8-12. <u>https://doi.org/10.1007/BF00506249</u>

- [3] Starke, K., Montel, H., Gayk, W. and Merder, R. (1974) Comparison of the Effects of Clonidine on Pre- and Postsynaptic Adrenoceptors in the Rabbit Pulmonary Artery. *a*-Sympathomimetic Inhibition of Neurogenic Vasoconstriction. *Naunyn-Schmiedeberg's Archives of Pharmacology*, 285, 133-150. https://doi.org/10.1007/BF00501149
- [4] Aghajanian, G.K. and VanderMaelen, C.P. (1982) Alpha 2-Adrenoceptor-Mediated Hyperpolarization of Locus Coeruleus Neurons: Intracellular Studies *in Vivo. Science*, 215, 1394-1396. https://doi.org/10.1126/science.6278591
- [5] Iwanaga, S., Shibata, O., Tsuda, A., Hashimoto, S., Makita, T., Cho, S. and Sumikawa, K. (1998) The Role of *a*<sub>1</sub>-Adrenoceptors in the Clonidine-Induced Contraction and Relaxation of Rat Aorta. *Research Communications in Molecular Pathology and Pharmacology*, **102**, 137-147.
- [6] Molin, J.C. and Bendhack, L.M. (2004) Clonidine Induces Rat Aorta Relaxation by Nitric Oxide-Dependent and -Independent Mechanisms. *Vascular Pharmacology*, 42, 1-6.
- [7] Shimamura, K., Toba, M., Kimura, S., Ohashi, A. and Kitamura K. (2006) Clonidine Induced Endothelium-Dependent Tonic Contraction in Circular Muscle of the Rat Hepatic Portal Vein. *Journal of Smooth Muscle Research*, 42, 63-74. <u>https://doi.org/10.1540/jsmr.42.63</u>
- [8] Zhao, D., Ren, L.M., Lu, H.G. and Zhang, X. (2008) Potentiation by Yohimbine of Alpha-Adrenoceptor-Mediated Vasoconstriction in Response to Clonidine in the Rabbit Ear Vein. *European Journal of Pharmacology*, 589, 201-205.
- [9] García-Sáinz, J.A., Romero-Ávila, M.T. and Alcántara-Hernández, R. (2011) Mechanisms Involved in a<sub>1B</sub>-Adrenoceptor Desensitization. *IUBMB Life*, 63, 811-815. <u>https://doi.org/10.1002/iub.519</u>
- [10] Dantas da Silva Júnior, E., Palmieri de Souza, B., Rodrigues, J.Q., Caricati-Neto, A., Jurkiewicz, A. and Jurkiewicz, N.H. (2014) Effects of Clonidine in the Isolated Rat Testicular Capsule. *European Journal of Pharmacology*, **726**, 16-26.
- [11] Arunlakshana, O. and Schild, H.O. (1959) Some Quantitative Uses of Drug Antagonists. *British Journal of Pharmacology and Chemotherapy*, 14, 48-58. <u>https://doi.org/10.1111/j.1476-5381.1959.tb00928.x</u>
- [12] Hayashi, Y. (2007) Historical Background of Clinical Application of *a*<sub>2</sub> Agonists in Anesthesia. *JJSCA*, 27, 110-116.
  <u>https://www.jstage.jst.go.jp/article/jjsca/27/2/27\_2\_110/\_article/-char/ja/</u> <u>https://doi.org/10.2199/jjsca.27.110</u>
- [13] Murakami, K., Karaki, H. and Urakawa, N. (1985) Role of Endothelium in the Contractions Induced by Norepinephrine and Clonidine in Rat Aorta. *The Japanese Journal of Pharmacology*, **39**, 357-364. <u>https://doi.org/10.1254/jjp.39.357</u>
- [14] Ruffolo, R.R., Yaden, E.L. and Waddell, J.E. (1980) Receptor Interactions of Imidazolines. V. Clonidine Differentiates Postsynaptic Alpha Adrenergic Receptor Subtypes in Tissues from the Rat. *The Journal of Pharmacology and Experimental Therapeutics*, 213, 557-561.
- [15] Docherty, J.R. (2010) Subtypes of Functional a<sub>1</sub>-Adrenoceptor. *Cellular and Mole-cular Life Sciences*, 67, 405-417. <u>https://doi.org/10.1007/s00018-009-0174-4</u>
- [16] Koshimizu, T.A., Tanoue, A., Hirasawa, A., Yamauchi, J. and Tsujimoto, G. (2003) Recent Advances in Alpha1-Adrenoceptor Pharmacology. *Pharmacology & Therapeutics*, 98, 235-244.

- [17] Fauaz, G., Feres, T., Borges, A.C. and Paiva, T.B. (2000) Alpha-2 Adrenoceptors Are Present in Rat Aorta Smooth Muscle Cells, and Their Action Is Mediated by ATP-Sensitive K<sup>+</sup> Channels. British Journal of Pharmacology, 131, 788-794. https://doi.org/10.1038/sj.bjp.0703630
- [18] Yamboliev, I.A. and Mutafova-Yambolieva, V.N. (2005) PI3K and PKC Contribute to Membrane Depolarization Mediated by  $a_2$ -Adrenoceptors in the Canine Isolated Mesenteric Vein. BMC Physiology, 5, 9. https://doi.org/10.1186/1472-6793-5-9

🔆 Scientific Research Publishing

## Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals) Providing 24-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work Submit your manuscript at: http://papersubmission.scirp.org/ Or contact pp@scirp.org