Asian Journal of Probability and Statistics

Volume 26, Issue 11, Page 110-123, 2024; Article no.AJPAS.125841 ISSN: 2582-0230

Imputation Methods for Missing Values in Estimation of Population Mean under Diagonal Systematic Sampling Scheme

Attahiru Aminu Bello ^{a*}, Ahmed Audu ^a, A.B Zoromawa ^a and M. M Hamza ^b

^a Department of Statistics, Usmanu Danfodiyo University, Sokoto, Nigeria. ^b Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.9734/ajpas/2024/v26i11675

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/125841

Original Research Article

Received: 30/08/2024 Accepted: 02/11/2024 Published: 19/11/2024

Abstract

In survey sampling, the use of auxiliary information to enhance estimators of population parameters under simple random sampling stratified random sampling and systematic sampling has been widely discussed. Similarly, some existing estimators were modified using regression imputation approach to obtain two imputation schemes and estimators that impute the responses non-respondents thereby eliminating difficulties in data presentation, compilation. The theoretical properties (estimators, biases and mean squared errors) of the proposed imputation scheme were derived so as to assess their robustness and efficiency. The theoretical findings were supported by simulation studies on population generated using four distributions namely; Beta, Gamma, Exponential and Uniform distributions. The averages of biases, MSEs and PREs of the estimators in

^{*}Corresponding author: Email: attahiruaminubello@gmail.com;

Cite as: Bello, Attahiru Aminu, Ahmed Audu, A.B Zoromawa, and M. M Hamza. 2024. "Imputation Methods for Missing Values in Estimation of Population Mean under Diagonal Systematic Sampling Scheme". Asian Journal of Probability and Statistics 26 (11):110-23. https://doi.org/10.9734/ajpas/2024/v26i11675.

comparison to the existing estimators were computed from the simulated data and the results showed that on average, the estimators of the proposed imputation scheme have minimum biases, minimum MSEs and higher PREs compared to the traditional unbiased estimators. These results imply that the estimators of the proposed schemes are more efficient and robust than the conventional unbiased estimators.

Keywords: Estimator; efficiency; robustness; distributions; systematic sampling.

1 Introduction

The use of auxiliary information to enhance estimators of population parameters under simple random sampling stratified random sampling and systematic sampling has been widely discussed. Cochran (1940) used "auxiliary information at estimation stage and suggested a ratio estimator. The ratio estimator is more efficient when study and auxiliary variates are positively correlated and regression line passes through the origin". In case of negative correlation, Robson (1957) developed "product method of estimation that provides a product estimator which is more efficient than the simple mean estimator". Hansen et al. (1946) developed "a combined ratio estimator in stratified sampling. In systematic sampling", Swain (1964) defined "a ratio estimator whereas Shukla (1971) suggested a product estimator. Many authors including Kushwaha and Singh (1989), Singh and Singh (1998) and Singh and Solanki (2012) discussed various estimators of population mean. Singh et al. (2011) suggested "a general family of estimators for estimating population mean in systematic sampling using auxiliary information in the presence of missing observations". Singh and Jatwa (2012) suggested "a class of exponential-type estimators in systematic sampling". Singh et al. (2011) studied some modified ratio and product estimators for population mean in systematic sampling. Singh (1967) used "information on population means of two auxiliary variates and developed a ratio-cum-product estimator in simple random sampling". Aved et al. (2023) Suggested that "the efficiencies of the estimators of the population parameters of the study variable can be increased by the use of auxiliary information related to auxiliary variable x, which is highly correlated with the study variable y. Auxiliary information may be efficiently utilized either at planning stage or at design stage to arrive at an improved estimator compared to those estimators, not utilizing auxiliary information. A simple technique of utilizing the known information of the population parameters of the auxiliary variables is through ratio, product, and regression method of estimations using different probability sampling designs such as simple random sampling, stratified random sampling, cluster sampling, double sampling. In this study we consider auxiliary information under the frame work of systematic sampling".

Systematic sampling has gotten the attention of survey statisticians due to its simplicity of use (Azeem and Khan, 2021). Systematic sampling is even simpler than simple random sampling as only the first units (or the first few units) are selected randomly from the population. The remaining units are obtained according to a predefined rule. First introduced by Madow and Madow (1944), many versions of systematic sampling have been developed by the researchers for use with different real-life situations. Madow and Madow (1944) introduced "the novel idea of selecting the units the population according to a pre-defined pattern, called systematic sampling". Madow and Madow (1944) proposed "method was only applicable to those circumstances where the size of the finite population is a constant multiple of the required sample size, thus limiting its usability". To overcome this drawback, Lahiri (1951) introduced "a new method called circular systematic sampling design". Later, Chang and Huang (2000) introduced a new modification of systematic random sampling which they called remainder systematic sampling which is also applicable in situations in which the size of a finite population is not a multiple of the sample size. Apart from its simplicity, systematic sampling provides estimators which are more efficient than simple random sampling or stratified random Sampling for certain types of population; see Cochran (1946), Gautschi (1957) and Hajeck (1959). Notable among them are Singh et al. (2011), Singh et al. (2012), Tailor et al. (2013), Khan et al. (2013), Subramani (2013), Verma et al. (2014), Verma and Singh (2014), Khan and Rajesh (2015), Noor-ul-Amin et al (2017), Azeem and Khan (2021), Zahoor et al. (2022), Ayed and Khan (2023), Azeem (2023).

The diagonal systematic sampling procedure was first introduced by Subramani (2000) which was found to be more precise as compared to simple random sampling and linear systematic sampling methods in the presence of linear trend. Sampath and Varalakshmi (2008) introduced a new modified systematic sampling method called diagonal circular systematic sampling. Subramani (2009) introduced generalized version of diagonal systematic sampling method. Khan et al. (2014) suggested the conditions under which the Sampath and Varalakshmi

(2008) sampling scheme is applicable. Khan et al. (2015) proposed a generalized version of systematic sampling, and it was shown that diagonal systematic sampling scheme is a special case of the new generalized sampling scheme. Imputation is a statistical method used to replace missing data with estimated values. Data obtained from sampling surveys often face the problem of non-response or missing values. These missing values create difficulty in analysis, processing and handling of data. The problem of non-response has been considered by many authors including Singh and Horn (2000), Singh and Deo (2003), Wang and Wang (2006), Kadilar and Cingi (2008), Audu et.al. In this paper, we intend proposing imputation schemes that impute responses for non-respondents while using Subramani and Gupta (2014) estimators and to obtained new modified estimators for the schemes as well as their biases and mean square errors.

1.1 Literature review

Consider a finite population $U = U_1, U_2, U_3, \dots, U_N$ of size N units. A sample of size n is taken at random from the first k units and every k^{th} subsequent unit then, N = nk where n and k are positive integers thus, there will be k samples each of size n and observe the study variable y and auxiliary variate x for each and every unit selected in the sample.

Let (y_{ij}, x_{ij}) for i = 1, 2, ..., k, j = 1, 2, ..., n indicate the value of j^{th} unit in the i^{th} sample and each value of (y_{ij}, x_{ij}) may be classify into two mutually exclusive classes, i.e. G and G', where G refers to the class of interest. Let

$$y_{ij} = \begin{cases} 1 & \text{if } y_{ij} \in G \\ 0 & \text{if } y_{ij} \in G \end{cases}$$
(1.1)

$$x_{ij} = \begin{cases} 1 & \text{if } x_{ij} \in G \\ 0 & \text{if } x_{ij} \in G \end{cases}$$

$$(1.2)$$

Then, the systematic sample means are defined as follows:

$$\overline{y}_{st} = t_0 = 1/n \sum_{j=1}^{n} y_{ij}$$
 and $\overline{x}_{st} = t_0 = 1/n \sum_{j=1}^{n} x_{ij}$ unbiased estimators of the population means
 $\overline{Y} = 1/n \sum_{j=1}^{n} y_{ij}$, and $\overline{X} = 1/n \sum_{j=1}^{n} x_{ij}$ of y and x

To obtain estimators up to first order of approximation, using the following error terms:

$$e_0 = \overline{y}_{sys} - \overline{Y} / \overline{X}, e_1 = \overline{x}_{sys} - \overline{X} / \overline{X}, e_2 = \overline{z}_{sys} - \overline{z} / \overline{z}$$

Subramani and Gupta (2014) proposed the modified systematic sampling scheme which is explained by the following step.

- 1. Firstly arrange the N population units (labels) in a matrix with $k = k_1 + k_2$ columns and That is, the first n_2k population units are arranged in row wise in the first n_2 rows with k elements each and the remaining $(n_1 n_2)k_1$ population units are arranged row wise in the next $(n_1 n_2)$ rows with k1 elements each as in the arrangement.
- 2. The first k_1 columns are assumed as Set 1 and the next k_2 columns are assumed are assumed at set 2

- 3. Select two random numbers, i in between 1 and k_1 and j in between 1 and k_2 , then select all the n_1 units in the i^{th} column of Set 1 and all the n_2 units in the j^{th} column of Set 2, which together give the sample of size n.
- 4. The step 3 leads to $k_1 \times k_2$ samples of size *n*

The arrangement of population unit of set-1 is given below:

S.No	1	2	3	4	K
1	1	•	i		k
2	<i>k</i> + 1	•	k + i	•	$k + k_1$
3	2k + 1	•	2k+i	•	$2k + k_1$
4					
5		•		•	
6		•		•	
7	$(n_2 - 1)k + 1$	•	$(n_2-1)k+i$	·	$(n_2 - 1)k + k_1$
	$n_2 k + 1$		$n_2k + i$		$n_2 k + k_1$
8	$n_2 k + k_1 + 1$	•	$n_2 k + k_1 + i$	•	
9		•			
K	$n_2k_2 + (n_1 - 1)k_1 + 1$	•	$n_2k_2 + (n_1 - 1)k_1 + i$	•	$n_2k_2 + n_1k_1$

The arrangement of population unit of set-2 is given below:

S.No	1	2	3	4	K
1	$k_1 + 1$		$k_1 + j$		2k
2	$k + k_1 + 1$		$k + k_1 + j$		3k
3	$2k + k_1 + 1$		$2k + k_1 + j$		
4					
5					
6					
7	$(n_2 - 1)k_1 + k_1 +$	1 ·	$(n_2-1)k_1+k_1+j$		n_2k

$$\pi_{i} = \begin{cases} \frac{1}{k_{1}} & \text{if } i^{th} \text{ unit is from the set} - 1 \\ \frac{1}{k_{2}} & \text{if } i^{th} \text{ unit is from the set} - 2 \end{cases} \\ \pi_{ij} = \begin{cases} \frac{1}{k_{2}}, & \text{if } i^{th} \text{ and } j^{th} \text{ units are from the column of set} - 1 \\ \frac{1}{k_{2}}, & \text{if } i^{th} \text{ and } j^{th} \text{ units are from the column of set} - 2 \\ \frac{1}{k_{1} \times k_{2}}, & \text{if } i^{th} \text{ and } j^{th} \text{ units are from the column of set} - 1 \\ 0, & \text{Otherwise.} \end{cases}$$

In general, for the given population size $N = n_1k_1 + n_2k_2$, the selected generalized modified linear systematic samples (labels of the population units) for the random starts *i* and *j* are given below:

$$S_{ij} = \begin{cases} i, i+k, i+2k, \dots, i+(n_2-1)k, i+n_2k, i+n_2k+k_1, \dots, i+n_2k+(n_1-n_2-1)k_1, \\ j+k_1, j+k_1+k, \dots, j+k_1+(n_2-1)k & (i=1,2,\dots,k_1 \text{ and } j=1,2,3,\dots,k_2) \end{cases}$$
(1.3)

1.2 Estimator of population mean in diagonal systematic sapling and its properties

The generalized modified linear systematic sample mean based on the random starts i and j is show below as

$$\overline{y}_{gmlss} = \frac{1}{n} \left(\sum_{i=0}^{n_2-1} y_{i+kl} + \sum_{i=0}^{n_1-n_2-1} y_{i+n_2k+k_1l} + \sum_{j=0}^{n_2-1} y_{j+k_1+kl} \right) \quad for \ i=1,2,...k_1 \ and \ j=1,2,3,...k_2 \ (1.4)$$

Since the first order inclusion probabilities are not equal, the generalized modified linear systematic sample mean given above in (1.4) is not an unbiased estimator. The mean squared error of the GMLSS mean can be obtained from (1.5) as given below

$$MSE\left(\bar{y}_{gmlss}\right) = \frac{1}{k_1 k_2} \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} \left(\bar{y}_{ij} - \bar{Y}\right)^2$$
(1.5)

2 Materials and Method

Let consider $(y, x) \varepsilon \psi^+$ be pair of the study associated auxiliary measured on the studied population. Also let *H* denote the set of response with n_1 units, H^c denotes the set of non-responses having $n - n_1$ units or missing units (out of *n*) and *S* denotes the set of *n* units sampled without replacement from the *N* units in the population of interest. For each $i \varepsilon H$, the value of y_i is observed. Likewise, for unit $i \varepsilon H^c$, is missing due to non-response and obtained using different procedure of imputation.

2.1 First proposed imputation schemes and its estimator

Motivated by Audu et al. (2021), the regression type imputation scheme for population mean based on diagonal systematic sampling design is proposed as in (1.6)

$$y_{.i} = \begin{cases} y_i & \text{if } i \in H \\ \overline{y}_{gmlss(r^*)} + \hat{\beta} \left(\overline{X} - \overline{x}_{gmls(r^*)} \right) \\ \overline{M_1 \overline{x}_{gmlss(r^*)}} + \overline{M_2} \left(M_1 \overline{X} + M_2 \right) & \text{if } i \in H^c \end{cases}$$
(1.6)

where,

$$\overline{y}_{gmlss(r^*)} = \frac{1}{r^*} \left(\sum_{i=0}^{r_1^*-1} y_{i+kl} + \sum_{i=o}^{r_1^*-r_2^*-1} y_{i+n_2k+k_ll} + \sum_{j=0}^{r_2^*-1} y_{j+k_1+kl} \right), \ \overline{x}_{gmlss(r^*)} = \frac{1}{r^*} \left(\sum_{i=0}^{r_1^*-1} x_{i+kl} + \sum_{i=o}^{r_1^*-r_2^*-1} x_{i+n_2k+k_ll} + \sum_{j=0}^{r_2^*-1} x_{j+k_1+kl} \right)$$

$$\hat{\beta} = s_{yx(r^*)} / s_{x(r^*)}^2, \quad s_{yx(r^*)} = (r^* - 1)^{-1} \sum_{i=1}^{r^*} \left(y_i - \overline{y}_{gmlss(r^*)}^* \right) \left(x_i - \overline{x}_{gmlss(r^*)}^* \right), \quad s_{x(r^*)}^2 = (r^* - 1)^{-1} \sum_{i=1}^{r^*} \left(x_i - \overline{x}_{gmlss(r^*)}^* \right)^2 r^* = r_1^* + r_2^*$$

The estimator of the first proposed imputation can be obtained as in (1.7).

$$t_{1} = \frac{1}{n} \left(\sum_{i \in H}^{r} y_{i} + \sum_{i \in H^{c}}^{n-r} \frac{\overline{y}_{gmlss(r^{*})} + \hat{\beta} \left(\overline{X} - \overline{x}_{gmlss(r^{*})} \right)}{M_{1} \overline{x}_{gmlss(r^{*})} + M_{2}} \right) \left(M_{1} \overline{X} + M_{2} \right)$$
(1.7)

Simplify (1.7), (1.8) is obtained.

$$t_{1} = \frac{r^{*}}{n} \overline{y}_{gmlss(r^{*})} + \left(1 - \frac{r^{*}}{n}\right) \frac{\left(\overline{y}_{gmlss(r^{*})} + \hat{\beta}\left(\overline{X} - \overline{x}_{gmlss(r^{*})}\right)\right)}{M_{1}\overline{x}_{gmlss(r^{*})} + M_{2}} \left(M_{1}\overline{X} + M_{2}\right)$$
(1.8)

Express (1.7) in terms of error term defined in (1.6), (1.9) is obtained.

$$t_{1} = \frac{r^{*}}{n} \left(\overline{Y} + \overline{Y} e_{0} \right) + \left(1 - \frac{r^{*}}{n} \right) \frac{\left(\overline{Y} + \overline{Y} e_{0} + \hat{\beta} \left(\overline{X} - \left(\overline{X} + \overline{X} e_{1} \right) \right) \right)}{M_{1} \left(\overline{X} + \overline{X} e_{1} \right) + M_{2}} \left(M_{1} \overline{X} + M_{2} \right)$$
(1.9)

$$t_{1} = \frac{r^{*}}{n} \left(\overline{Y} + \overline{Y} e_{0} \right) + \left(1 - \frac{r^{*}}{n} \right) \left(\overline{Y} + \overline{Y} e_{0} - \hat{\beta} \, \overline{X} e_{1} \right) \left(1 + \lambda e_{1} \right)^{-1}$$

$$(1.10)$$

where $\lambda = \frac{M_1 \overline{X}}{M_1 \overline{X} + M_2}$

Simplify (1.10) up to first order approximation, (1.11) is obtained

$$t_1 = \overline{Y} + \overline{Y}e_0 + \left(1 - \frac{r^*}{n}\right) \left(-\hat{\beta}\,\overline{X}e_1 - \lambda\overline{Y}e_1 - \lambda\overline{Y}e_0e_1 + \lambda\hat{\beta}\,\overline{X}e_1^2 + \overline{Y}\,\lambda^2e_1^2\right)$$
(1.11)

Subtract \overline{Y} from both side of (1.11), (1.12) is obtained.

$$t_1 - \overline{Y} = \overline{Y}e_0 - \left(1 - \frac{r^*}{n}\right)\left(\hat{\beta}\overline{X} + \lambda\overline{Y}\right)e_1 + \left(1 - \frac{r^*}{n}\right)\left(\lambda\hat{\beta}\overline{X} + \overline{Y}\lambda^2\right)e_1^2 - \left(1 - \frac{r^*}{n}\right)\lambda\overline{Y}e_0e_1 \quad (1.12)$$

To obtain the bias of t_1 , take expectation (1.12).

Since
$$E(e_0) = E(e_1) = 0$$
, $E(e_0^2) = \left(\frac{1}{r} - \frac{1}{N}\right) \frac{S_y^2}{\overline{Y}^2}$, $E(e_0e_1) = \left(\frac{1}{r} - \frac{1}{N}\right) \frac{S_{xy}}{\overline{Y} \overline{X}}$, the bias t_1 is obtain as in (1.13)

Bello et al.; Asian J. Prob. Stat., vol. 26, no. 11, pp. 110-123, 2024; Article no.AJPAS.125841

$$Bias(t_1) = \left(1 - \frac{r^*}{n}\right) \left(\frac{1}{r} - \frac{1}{N}\right) \left[\left(\lambda\hat{\beta}\bar{X} + \bar{Y}\lambda^2\right)C^2x - \lambda\bar{Y}\rho yxCyCx\right]$$
(1.13)

To obtain the MSE of t_1 , square (1.13) and take expectation of the result, the MSE of t_1 is obtained as in (1.14).

$$MSE(t_1) = \left(\frac{1}{r} - \frac{1}{N}\right) \left(\overline{Y}^2 C_y^2 + \left[\left(1 - \frac{r^*}{n}\right)^2 \left(\hat{\beta}\overline{X} + \lambda\overline{Y}\right)^2 C_x^2\right] - 2\overline{Y} \left(1 - \frac{r^*}{n}\right) \left(\hat{\beta}\overline{X} + \lambda\overline{Y}\right) \rho_{xy} C_x C_y\right) (1.14)$$

2.2 Second proposed imputation schemes and its estimator

Motivated by Audu and Singh (2021), the regression type imputation scheme for population mean based on diagonal systematic sampling design is proposed as in (1.15)

$$y_{,i} = \begin{cases} y_{i} & \text{if } i \in H \\ \frac{\overline{y}_{gmlss(r^{*})} + \hat{\beta}\left(\overline{X} - \overline{x}_{gmlss(r^{*})}\right)}{M_{1}\overline{x}_{gmlss(r^{*})} + M_{2}} \left(M_{1}\overline{X} + M_{2}\right) \exp\left(\frac{\overline{X} - \overline{x}_{gmlss(r^{*})}^{*}}{\overline{X} + \overline{x}_{gmlss(r^{*})}^{*}}\right) & \text{if } i \in H^{c} \end{cases}$$
(1.15)

The estimators of the second proposed imputation scheme can be expressed as in (1.16)

$$t_{2} = \frac{1}{n} \left(\sum_{i \in H}^{r} y_{i} + \sum_{i \in H^{c}}^{n-r} \frac{\overline{y}_{gmlss(r^{*})} + \hat{\beta} \left(\overline{X} - \overline{x}_{gmlss(r^{*})} \right)}{M_{1} \overline{x}_{gmlss(r^{*})} + M_{2}} \right) \left(M_{1} \overline{X} + M_{2} \right) \exp \left[\frac{\overline{X} - \overline{x}_{gmlss(r^{*})}}{\overline{X} + \overline{x}_{gmlss(r^{*})}} \right]$$
(1.16)

Simplify (1.16) and (1.17) is obtained.

$$t_{2} = \frac{r^{*}}{n} \overline{y}_{gmlss(r^{*})} + \left(1 - \frac{r}{n}\right) \frac{\left(\overline{y}_{gmlss(r^{*})} + \hat{\beta}\left(\overline{X} - \overline{x}_{gmlss(r^{*})}\right)\right)}{M_{1}\overline{x}_{gmlss(r^{*})} + M_{2}} \left(M_{1}\overline{X} + M_{2}\right) \exp\left[\frac{\overline{X} - \overline{x}_{gmlss(r^{*})}}{\overline{X} + \overline{x}_{gmlss(r^{*})}}\right] (1.17)$$

Express (1.17) in terms of error terms defined in (1.15), (1.18) is obtained.

$$t_{2} = \frac{r^{*}}{n} \left(\overline{Y} + \overline{Y}e_{0} \right) + \left(1 - \frac{r}{n} \right) \frac{\left(\left(\overline{Y} + \overline{Y}e_{0} \right) + \hat{\beta} \left(\overline{X} - \left(\overline{X} + \overline{X}e_{1} \right) \right) \right)}{M_{1} \left(\overline{X} + \overline{X}e_{1} \right) + M_{2}} \left(M_{1}\overline{X} + M_{2} \right) \exp \left[\frac{\overline{X} - \left(\overline{X} + \overline{X}e_{1} \right)}{\overline{X} + \left(\overline{X} + \overline{X}e_{1} \right)} \right]$$
(1.18)

Simplify (1.18) up to first order approximation, (1.19) is obtained.

$$t_{2} = \frac{r^{*}}{n}\overline{Y} + \frac{r^{*}}{n}\overline{Y}e_{0} + \left(1 - \frac{r^{*}}{n}\right)\left(\overline{Y} + \overline{Y}e_{0} - \hat{\beta}\overline{X}e_{1}\right)\left(1 - \lambda e_{1} + \lambda e_{1}^{2}\right)\left[1 - \frac{e_{1}}{2} + \frac{3e_{1}^{2}}{8}\right]$$
(1.19)

Subtract \overline{Y} up to first order approximation (1.19), (1.20) is obtained.

Bello et al.; Asian J. Prob. Stat., vol. 26, no. 11, pp. 110-123, 2024; Article no.AJPAS.125841

$$t_{2} - \overline{Y} = \overline{Y}e_{0} + \left(1 - \frac{r^{*}}{n}\right)\left(-\hat{\beta}\overline{X} - \lambda\overline{Y} - \frac{\overline{Y}}{2}\right)e_{1} + \left(1 - \frac{r^{*}}{n}\right)\left(\lambda\hat{\beta}\overline{X} + \lambda^{2}\overline{Y} + \frac{\hat{\beta}\overline{X}}{2} + \frac{\lambda\overline{Y}}{2} + \frac{3\overline{Y}}{2}\right)e_{1}^{2} + \left(1 - \frac{r^{*}}{n}\right)\left(-\lambda\overline{Y} - \overline{Y}\right)e_{0}e_{1}$$

$$(1.20)$$

To obtain the bias of t_2 , take expectation (1.20), the bias t_2 is obtained as in (1.21).

$$Bias(t_2) = \left(1 - \frac{r^*}{n}\right) \left(\frac{1}{r} - \frac{1}{N}\right) \left(\left(\lambda\hat{\beta}\bar{X} + \lambda^2\bar{Y} + \frac{\hat{\beta}\bar{X}}{2} + \frac{\lambda\bar{Y}}{2} + \frac{3\bar{Y}}{2}\right) C_x^2 - \left(\lambda\bar{Y} + \bar{Y}\right)\rho_{xy}C_xC_y\right) (1.21)$$

To obtain the MSE of t_2 , square (1.21) and take expectation of the result, the MSE of t_2 is obtained.

$$MSE(t_2) = \left(\frac{1}{r} - \frac{1}{N}\right) \left(\overline{Y}^2 C_y^2 + \left(1 - \frac{r^*}{n}\right) \left(\hat{\beta}\overline{X} + \overline{Y}\left(\lambda + \frac{1}{2}\right)\right) \left[\left(\hat{\beta}\overline{X} + \overline{Y}\left(\lambda + \frac{1}{2}\right)\right) C_x^2 - 2\overline{Y}\rho_{xy}C_xC_y\right]\right] (1.22)$$

3 Empirical Study

This section, presents simulation studies designed to evaluate the efficiency of the proposed estimators to assess the performance of existing estimators, a simulation was carried out. A population datasets of 1000 units was created using function from Table 1. Then, Simple Random Sampling without Replacement (SRSWOR) was use to select 100 units 1000 times. The Biases, MSEs and PREs of the considered estimators were computed using (1.23), (1.24) and (1.25)

$$Bias(T) = \frac{1}{1000} \sum_{j=1}^{1000} \left(T - \overline{Y}\right)$$
(1.23)

$$MSEs(T) = \frac{1}{1000} \sum_{j=1}^{1000} \left(T - \overline{Y}\right)$$
(1.24)

$$PREs(T) = \frac{MSE(V_a)}{MSE(T)} \times 100$$
(1.25)

where T are any of the proposed or existing estimators

Table 1. Population used for simulation study

Population	Auxiliary Variable (X)	Study Variable (Y)
1	X~beta(1,2)	Y = 10 * X + e
2	<i>X~gamma</i> (1,3)	
3	$X \sim \exp(1)$	
4	X~unif(1,10)	

ESTIMATOR	BIAS	MSE	PRE	ESTIMATOR	BIAS	MSE	PRE
\overline{y}_{gmlss}	-0.0694	0.0048	100	$\overline{\mathcal{Y}}_{gmlss}$	-0.0694	0.0048	100
Proposed Estim	nator t_1			Proposed Estim	ator t_2		
<i>t</i> ₁₍₁₎	-0.04596	0.002112	228.44	<i>t</i> ₂₍₁₎	0.3477572	0.00135189	357.0
$t_{1(2)}$	-0.05858	0.003432	140.60	$t_{2(2)}$	0.327557	0.0024571	196.4
$t_{1(3)}$	-0.06181	0.003821	126.30	<i>t</i> ₂₍₃₎	0.3223945	0.0027922	172.8
$t_{1(4)}$	-0.12867	0.016556	29.151	<i>t</i> ₂₍₄₎	0.2154225	0.0145526	33.16
$t_{1(5)}$	-0.05816	0.003383	142.65	<i>t</i> ₂₍₅₎	0.3282335	0.0024148	199.8
$t_{1(6)}$	-0.06235	0.00388	124.15	<i>t</i> ₂₍₆₎	0.3215389	0.0028498	169.3
$t_{1(7)}$	-0.08781	0.00771	62.583	$t_{2(7)}$	0.2807891	0.006274	76.92
$t_{1(8)}$	-0.05933	0.00352	137.07	<i>t</i> ₂₍₈₎	0.3263568	0.0025331	190.5
$t_{1(19)}$	-0.05509	0.00303	158.99	$t_{2(19)}$	0.3331449	0.0021186	227.81
$t_{1(20)}$	-0.022929	0.00052	918.07	$t_{2(20)}$	0.3846141	0.0001798	2683.7
$t_{1(21)}$	-0.054603	0.00298	161.87	<i>t</i> ₂₍₂₁₎	0.3339343	0.0020728	232.84
$t_{1(22)}$	-0.067658	0.00457	105.43	<i>t</i> ₂₍₂₂₎	0.3130449	0.0034535	139.75
$t_{1(23)}$	-0.065011	0.00422	114.19	<i>t</i> ₂₍₂₃₎	0.3172813	0.0031451	153.45
$t_{1(24)}$	-0.06818	0.004649	103.81	<i>t</i> ₂₍₂₄₎	.3122036	0.0035168	137.25
$t_{1(25)}$	-0.06005	.003606	133.8308	<i>t</i> ₂₍₂₅₎	0.325214	0.0026065	185.16
<i>t</i> ₁₍₂₆₎	-0.06250	0.003906	123.53	<i>t</i> ₂₍₂₆₎	0.321290	0.0028666	168.36
<i>t</i> ₁₍₂₇₎	-0.08276	.006849	70.462	<i>t</i> ₂₍₂₇₎	0.288877	0.0054882	87.941

Table 2. Biases, MSEs and PREs of Estimators and under population I (beta)

Table 3. Biases, MSEs and PREs of estimators and under population II (Gamma)

ESTIMATOR	BIAS	MSE	PRE	ESTIMATOR	BIAS	MSE	PRE
\overline{y}_{gmlss}	0.10237	0.0104807	100	\overline{y}_{gmlss}	0.10237	0.010480	100
Proposed Estim	nator t_1			Proposed Estim	ator t_2		
<i>t</i> ₁₍₁₎	0.065744	0.0043223	242.477	<i>t</i> ₂₍₁₎	0.35330	0.0026917	389.360
$t_{1(2)}$	0.083925	0.0070434	148.800	$t_{2(2)}$	0.37947	0.0048550	215.873
$t_{1(3)}$	0.089754	0.0080559	130.099	$t_{2(3)}$	0.38786	0.0056827	184.430
$t_{1(4)}$	0.092233	0.0085071	123.199	$t_{2(4)}$	0.39143	0.0060545	173.106
$t_{1(5)}$	0.089651	0.0080374	130.399	$t_{2(5)}$	0.38771	0.0056675	184.925
$t_{1(6)}$	0.091377	0.0083498	125.519	$t_{2(6)}$	0.39019	0.0059247	176.897
$t_{1(7)}$	0.093035	0.0086556	121.085	<i>t</i> ₂₍₇₎	0.39258	0.0061772	169.667

ESTIMATOR	BIAS	MSE	PRE	ESTIMATOR	BIAS	MSE	PRE
<i>t</i> ₁₍₈₎	0.091306	0.0083367	125.716	<i>t</i> ₂₍₈₎	0.39009	0.0059139	177.219
$t_{1(19)}$	0.079755	0.0063609	164.765	<i>t</i> ₂₍₁₉₎	0.37347	0.004302	243.571
$t_{1(20)}$	0.090708	0.0082281	127.377	$t_{2(20)}$	0.38923	0.0058242	179.944
$t_{1(21)}$	0.086815	0.0075369	139.057	$t_{2(21)}$	0.38363	0.0052572	199.356
$t_{1(22)}$	0.073968	0.005471	191.554	$t_{2(22)}$	0.36514	0.0035919	291.787
$t_{1(23)}$	0.081380	0.0066228	158.252	$t_{2(23)}$	0.37581	0.0045141	232.176
$t_{1(24)}$	0.081193	0.0065923	158.983	$t_{2(24)}$	0.37554	0.0044895	233.449
$t_{1(25)}$	0.0799445	0.0063911	163.988	$t_{2(25)}$	0.373742	0.0043272	242.205
$t_{1(26)}$	0.0871056	0.0075873	138.133	$t_{2(26)}$	0.384050	0.0052985	197.805
<i>t</i> ₁₍₂₇₎	0.0907925	0.0082432	127.142	t ₂₍₂₇₎	0.389357	0.0058369	179.5592

Table 4. Biases, MSEs and PREs of estimators and under population III (Exponential)

ESTIMATOR	BIAS	MSE	PRE	ESTIMATOR	BIAS	MSE	PRE
$\overline{\mathcal{Y}}_{gmlss}$	2.113235	4.465763	100	\overline{y}_{gmlss}	2.113235	4.465763	100
Proposed Estima	tor t_1			Proposed Estima	tor t_2		
$t_{1(1)}$	1.60226	2.567238	173.952	$t_{2(1)}$	0.370218	2.058313	216.962
<i>t</i> ₁₍₂₎	1.802479	3.248931	137.453	$t_{2(2)}$	0.443522	2.616755	170.660
$t_{1(3)}$	1.800959	3.243453	137.685	$t_{2(3)}$	0.442966	2.612263	170.953
$t_{1(4)}$	1.917439	3.676574	121.465	$t_{2(4)}$	0.485611	2.967652	150.481
$t_{1(5)}$	1.839543	3.383917	131.970	$t_{2(5)}$	0.457092	2.727475	163.732
$t_{1(6)}$	1.774492	3.14882	141.823	$t_{2(6)}$	0.433275	2.534669	176.187
$t_{1(7)}$	1.900243	3.610924	123.673	$t_{2(7)}$	0.479315	2.913759	153.264
$t_{1(8)}$	1.813763	3.289738	135.748	$t_{2(8)}$	0.447654	2.650222	168.505
$t_{1(19)}$	1.777506	3.159528	141.342	$t_{2(19)}$	0.434379	2.543448	175.579
$t_{1(20)}$	1.901305	3.61496	123.535	$t_{2(20)}$	0.479704	2.917073	153.09
$t_{1(21)}$	1.81527	3.295203	135.523	$t_{2(21)}$	0.448205	2.654705	168.220
$t_{1(22)}$	1.665817	2.774946	160.931	$t_{2(22)}$	0.393487	2.22833	200.408
$t_{1(23)}$	1.664983	2.772167	161.092	$t_{2(23)}$	0.393182	2.226055	200.613
$t_{1(24)}$	1.689513	2.854456	156.448	$t_{2(24)}$	0.402163	2.293446	194.718
$t_{1(25)}$	1.739643	3.026356	147.562	$t_{2(25)}$	0.420516	2.434286	183.452
$t_{1(26)}$	1.738249	3.021509	147.799	$t_{2(26)}$	0.420006	2.430314	183.752
$t_{1(27)}$	1.870916	3.500326	127.581	t ₂₍₂₇₎	0.468578	2.822988	158.192

ESTIMATOR	BIAS	MSE	PRE	ESTIMATO	R BIAS	MSE	PRE
$\overline{\mathcal{Y}}_{gmlss}$	1.040	0.680506	100	$\overline{\mathcal{Y}}_{gmlss}$	1.0405	0.680506	100
Proposed Estin	nator t_1			Proposed Es	timator t_2		
<i>t</i> ₁₍₁₎	0.6838	0.137023	496.6369	<i>t</i> ₂₍₁₎	-0.847047	0.02948791	2307.749
$t_{1(2)}$	0.8676	0.241331	281.9803	$t_{2(2)}$	0.762456	0.09015195	754.8443
$t_{1(3)}$	0.8721	0.245890	276.7516	<i>t</i> ₂₍₃₎	-0.760385	0.09312021	730.7832
$t_{1(4)}$	0.9257	0.4643314	146.5563	<i>t</i> ₂₍₄₎	-0.735732	0.2521119	269.9226
$t_{1(5)}$	0.8756	0.383333	177.5237	<i>t</i> ₂₍₅₎	-0.75877	0.1900951	357.9823
$t_{1(6)}$	0.8339	0.3282938	207.286	$t_{2(6)}$	-0.77798	0.149762	454.3922
<i>t</i> ₁₍₇₎	0.8984	0.5037856	135.0787	<i>t</i> ₂₍₇₎	-0.748316	0.2832483	240.251
$t_{1(8)}$	0.8377	0.4555375	149.3855	<i>t</i> ₂₍₈₎	-0.776229	0.2452482	277.4768
$t_{1(19)}$	0.8242	0.3166889	214.8818	<i>t</i> ₂₍₁₉₎	-0.78242	0.1414849	480.975
$t_{1(20)}$	0.8945	0.501948	135.5732	$t_{2(20)}$	-0.750109] 0.281786	241.4975
$t_{1(21)}$	0.8329	0.4517067	150.6524	<i>t</i> ₂₍₂₁₎	-0.778446	0.2422674	280.8909
<i>t</i> ₁₍₂₂₎	0.7608	0.1625728	418.5861	<i>t</i> ₂₍₂₂₎	-0.811589	0.0427614	1591.405
$t_{1(23)}$	0.7646	0.1639806	414.9922	$t_{2(23)}$	-0.809851	0.0435296	1563.319
$t_{1(24)}$	0.7677	0.2307597	294.8985	<i>t</i> ₂₍₂₄₎	-0.808440	0.0833499	816.4453
<i>t</i> ₁₍₂₅₎	0.8204	0.2010124	338.5398	<i>t</i> ₂₍₂₅₎	-0.784168	0.0648742	1048.962
<i>t</i> ₁₍₂₆₎	0.8252	0.2041937	333.2654	<i>t</i> ₂₍₂₆₎	-0.78195	0.0667992	1018.735
<i>t</i> ₁₍₂₇₎	0.8913	0.4205507	161.8133	<i>t</i> ₂₍₂₇₎	0.7515617	0.218242	311.813

Table 5. Biases, MSEs and PREs of Estimators and under population IV (Uniform)

Tables 2-5 present numerical results that compare the biases, mean squared errors (MSEs) and percentage relative efficiencies (PREs) of existing estimators and the new estimators proposed in the study. The findings indicate that all the proposed estimators exhibit lower MSEs and higher PREs compared to the existing estimators considered in the investigation. The results showed that the proposed estimators t_1 and t_2 exhibited

lower MSEs with significant percentage gains in efficiency compared to the estimator proposed by Subramani and Gupta (2014) in all the cases considered for the empirical studies with the exception of few cases where few members of the new estimators of the proposed performed below standard.

4 Conclusion

The empirical investigation revealed that the proposed estimators consistently are efficient than the estimator introduced by Subramani and Gupta (2014) in terms of efficiency, across all the scenarios examined. Notably, the proposed estimators demonstrated superior performance in the vast majority of cases, with only few exceptions where a subset of the new estimators exhibited subpar results. These findings highlight the proposed methodology's robustness and accuracy advantages, making it valuable contribution to estimator development.

Disclaimer (Artificial Intelligence)

Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of this manuscript.

Competing Interests

Authors have declared that no competing interests exist.

References

- Audu, A., Singh, R., & Supriya, K.(2021). New regression-type compromised imputation class of estimators with known parameters of auxiliary variable. *Journal of Statistics and Management Systems*,52(10), 4789-4801. https://doi.org/:10.1080/03610918.2021.197082
- Audu, A. & Singh, R. V. K. (2021). Exponential-type regression compromised imputation class of estimators . *Journal of Statistics and Management Systems*, 24(6), 1253-1266.
- Ayed, A. E. & Khalid, U. I. (2023). A New exponential type ratio estimator for the population mean in systematic sampling, 18 (74), 422-449.
- Azeem, M & Khan, Z. (2021). An Improved Diagonal-Cum-Linear Systematic Sampling scheme. Indian Journal of Economics and Business, 20(2), 1197-1209.
- Azeem, M., Hussain, S., Ijaz, M., & Salahuddin, N. (2023). An improved version of systematic sampling design for use with linear trend data. DOI:10.16/j.heliyon.2023e17121.
- Chang, H. J. & Hauang, K.C. (2000). Remainder linear systematic sampling, *Sankhya: Indian Journal Of Statistic*, 62, 249-256.
- Cochran, W. G. (1946). Relative accuracy of systematic and stratified random samples for a certain class of populations, *The Annals of Mathematical Statistics*, 17, 164–177.
- Cochran, W. G. (1940). The estimation of the yields of the cereal experiments by sampling for the ration to produce. *Journal of Agricultural Science*, 30, 262-275.
- Gautschi, W. (1957). Some remarks on systematic sampling, Annals of Mathematical Statistics. 28, 385–394.
- Hajeck, J. (1959). Optimum strategy and other problems in probability sampling, *Casopis propestovani Matematikly*, 84, 387-423.
- Hansen, M. H. Hurwitz, W. N. Gurney, M. (1946). Problems and methods of the sample survey of business, *The Journal of the American Statistical Association*, 41(234), 173–189.
- Kadilar, C. & Cingi, H. (2006). Improvement in estimating the population mean in simple random sampling. *Applied Mathematics Letters*, 19(1), 75-79.
- Kadilar, C. and Cingi, H. (2008). Estimators for the population mean in the case of missing data, Communications in Statistics- Theory and Methods, 37, 2226-2236.
- Khan, M. S., Ullah, A., Al-Hossain. Y., & Bashir, N. (2015). Improved ratio-type estimators using maximum and minimum values under simple random sampling scheme, Hacette. *Journal of Mathematics and Statistics*, 44(4), 923–931.
- Khan, M. & Rajesh, S. (2015). Estimation of population mean in chain ratio-type estimator under systematic sampling, *journal of probability and statistics*. DOI:10.1155/2015/248374.

- Kushwaha, K. S. & Singh, H. P. (1989). Class of almost unbiased ratio and product estimators in systematic sampling, *Journal of the Indian Society of Agricultural Statistics*. 2(41), 193-205.
- Lahiri, D. B. (1951). A method for selection providing unbiased estimates. *International Statistical Association Bulletin*, 33, 133-140.
- Madow, W. G. & Madow, L. H. (1944). On the theory of systematic sampling. I, Annals of Mathematical Statistics. 15, 1–24.
- Noor-ul-Amin, M., Javiad, A., Hanif, M. (2017). Estimation of population mean in systematic Pestovani Matematiky, 84, 387-423.
- Robson, D. S. (1957). Application of multivariable polykas to the theory of un -biased ratio type estimation. *Journal of American Statistics Associations*, 50, 1225-1226.
- Singh, S. and Deo, B. (2003). Imputation by power transformation. Statistical Papers, 44, 555-579. Singh, S. and Horn, S. (2000). Compromised imputation in survey sampling. Metrika, 51, 267-s276
- Sampath, S. & Varalakshmi, V. (2008). Diagonal circular systematic sampling, Model AssistedStatistics Application. 3, 345–352.
- Shukla, N. D., (1971). Systematic sampling and product method of estimation. In Processing of All India Seminar on Demography and Statistics.BHU, Varansi, India.
- Signh, H. P., & Tailor, R. (2003). Use of known correlation coefficient in estimating the finite. the population mean. *Statistics in Transition*, 6, 555-560.
- Singh, H. P. & Solanki, R. S. (2012). An efficient class of estimators for the population mean using auxiliary information in systematic sampling. *Journal of Statistical Theory and Practice*, 6(2), 274–285.
- Singh, H. P. Tailor, R. Jatwa, N. K. (2011). Modified ratio and product estimators for population mean in systematic sampling, *Journal of Modern Applied Statistical Methods*, 10(2),424–435.
- Singh, H. P., & Jatwa, N.K (2012). A class of exponential-type estimators in systematic sampling. *Economic Quality Control*, 27, 915-208.
- Singh, M. P. (1967). Ratio cum product method of estimation, Metrika, 12(1), 34-42.
- Singh, R. Malik, S. Chaudhary, M. K. Verma, H. & Adewara, A. A. (2012). A general family of ratio-type estimators in systematic sampling," *Journal of Reliability and Statistical Studies*, 5(1), 73–82.
- Singh, R. & Singh, H. P. (1998). Almost unbiased ratio and product type estimators in systematic sampling, *Questiio*, 22(3), 403–416.
- Singh, R. Chauhan. P., Sawan. N., & Smarandache, F. (2011). Improved exponential estimator for population variance using two auxiliary variables, *Italian Journal of Pure and Applied Mathematics*. 28, 101–108.
- Singh, R., Malik., S. Singh., V. K. (2012). An improved estimator in systematic sampling. Journal Of Scientific Research, 56, 177-182.
- Subramani, J. (2000). Diagonal systematic sampling scheme for finite populations, *Journal of the Indian Society* of Agricultural Statistics, 53(2), 187-195.
- Subramani, J. (2009). Further results on diagonal systematic sampling for finite populations, *Journal of Indian Society of Agricultural Statistic*, 63, 277-282.
- Subramani, J., Gupta, S.N. (2014). Generalized modified linear systematic sampling scheme for finite populations, *Hacet. Journal of Mathematics and Statistic*, 43, 529-542.

- Swain, A. K. P. C. (1964). The use of systematic sampling ratio estimate. *Journal of Indian Statistical Association*, 2, 160-164.
- Tailor, T. Jatwa., N. K. Singh., H. P. (2013). A ratio-cum-product estimator of finite population mean in systematic sampling, *Statistics In Transition*. 14(3), 391-398.
- Verma, H. K. & Singh, R. (2014). A family of efficient estimator in circular systematic sampling, *Journal of Advanced Computing*, 3(2), 56–68.
- Verma, H. K. Singh, R. D. Singh, R. (2014), Some improved estimators in systematic sampling. under nonresponse, *National Academy Science Letters*, 37(1), 91–95.
- Wang, L. and Wang, Q., (2006). Empirical likelihood for parametric model under imputation for missing data. Journal of Statistics and Management Systems, 9 (1), 1-13.
- Zahoor, A. G., Tanveer A. Y., & Khalid, I. (2022). A new data gathering exponential type-ratio estimator for the Population Mean. *Journal of Scientific Research & Reports* 28(10), 148-153. DOI: 10.9734202228101697.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) https://www.sdiarticle5.com/review-history/125841