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Abstract: Aims: Angiotensin-converting-enzyme inhibitors (ACE inhibitors) are a cornerstone of
drug therapy after myocardial infarction (MI) and improve left ventricular function and survival. We
aimed to elucidate the impact of early treatment with the ACE inhibitor ramipril on the hematopoietic
response after MI, as well as on the chronic systemic and vascular inflammation. Methods and Results:
In a mouse model of MI, induced by permanent ligation of the left anterior descending artery,
immediate initiation of treatment with ramipril (10 mg/k/d via drinking water) reduced cardiac
inflammation and the number of circulating inflammatory monocytes, whereas left ventricular
function was not altered significantly, respectively. This effect was accompanied by enhanced
retention of hematopoietic stem cells, Lin−Sca1−c-Kit+CD34+CD16/32+ granulocyte–macrophage
progenitors (GMP) and Lin−Sca1−c-Kit+CD150−CD48− multipotent progenitors (MPP) in the bone
marrow, with an upregulation of the niche factors Angiopoetin 1 and Kitl at 7 d post MI. Long-
term ACE inhibition for 28 d limited vascular inflammation, particularly the infiltration of Ly6Chigh

monocytes/macrophages, and reduced superoxide formation, resulting in improved endothelial
function in mice with ischemic heart failure. Conclusion: ACE inhibition modulates the myeloid
inflammatory response after MI due to the retention of myeloid precursor cells in their bone marrow
reservoir. This results in a reduction in cardiac and vascular inflammation with improvement in
survival after MI.

Keywords: myocardial infarction; ACE inhibitors; emergency hematopoiesis; vascular inflammation

1. Introduction

Besides rapid revascularization, medical therapy substantially improves outcomes af-
ter acute myocardial infarction (MI). Antiplatelet therapy, ß-blockers, statins and angiotensin-
converting-enzyme inhibitors (ACE inhibitors) or angiotensin II receptor type 1 blockers
(ARB) form the basis of drug treatment [1].

While the prevention and treatment of cardiovascular risk factors determine current
therapeutic strategies, there is growing evidence that MI induces long-lasting changes
in the immune system and hematopoiesis, which accelerates inflammation [2,3]. Several
immune cells express angiotensin II receptors, primarily type 1, on their surface, which
impacts downstream signaling and polarization [4]. Due to phosphorylation of NF-kB,
AngII signaling directly influences the levels of inflammatory cytokines such as tumor
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necrosis factor alpha (TNFα) or interleukin 1 beta (IL1ß), which are drivers of chronic
inflammation in cardiovascular diseases [5]. It has been shown that AngII enhances
vascular permeability, amplifies the expression of selectins on endothelial cells, platelets
and leukocytes and regulates the expression of integrins such as vascular cell adhesion
molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) [6–8].

Recently, we could show that circulating myeloid cells drive vascular inflammation
in ischemic heart failure. Treatment with the ARB telmisartan for four weeks post-MI
improved systemic vascular dysfunction due to local anti-inflammatory effects and dimin-
ished bone marrow hematopoiesis in experimental heart failure [9]. There is additional
evidence that RAS directly interacts with myeloid hematopoiesis because infusion with
AngII caused an accumulation, differentiation as well as expulsion of hematopoietic stem
cells (HPSC) out of the bone marrow and spleen [10]. Dutta et al. demonstrated that
acute MI induces a severe mobilization of HPSCs, particularly CCR2 +CD150+CD48− LSK
(lineage-Sca-1+ c-kit+) cells [3]. Furthermore, MI leads to mobilization of splenic-stored
inflammatory Ly6Chigh monocytes, releasing them into the bloodstream. Mice lacking the
angiotensin receptor (Atgr1a−/−) showed lower numbers of monocytes released from their
splenic reservoir [11].

To close the gap in knowledge between the proven clinical benefits of ACE inhibitor
administration and extensively investigated AngII effects, we analyzed the impact of early
ramipril treatment after acute MI on the myeloid emergency response in the bone marrow
and spleen, as well as the long-term effects on cardiac and vascular inflammation.

2. Material and Methods
2.1. Chemicals

The chemicals were acquired from Sigma, Merck or Fluka and were of the highest
quality and analytical grade.

2.2. Ethics Approval

All animal experiments were authorized by the Animal Care and Use Committee of
Rhineland-Palatinate. The registries number of approval was G15-1-067, and all experi-
mental procedures conducted conformed to the guidelines from Directive 2010/63/EU of
the European Parliament on the protection of animals used for scientific purposes. The
housing and treatment were in accordance with the institutional guidelines of the Central
Animal Facility of the University Medical Center in Mainz (TARC) and with the relevant
laws. Investigators performing animal experiments were in possession of certificates of at
least FELASA B (Federation of Laboratory Animal Association) level.

2.3. Animals and In Vivo Treatment

Male (8 to 14 weeks old) C57BL/6J mice were purchased from Jackson Laboratory.
MI was induced by permanent ligation of the left anterior descending artery (LAD), as
described previously [12]. Anesthesia consisted of medetomidine (500 µL/kgBW (body
weight)), fentanyl (50 µg/kgBW) and midazolam (5 mg/kgBW) and was injected in-
traperitoneally before surgical treatment. Antipamezol (2.5 mg/kgBW) and flumazenil
(0.5 µg/kgBW) were injected to antagonize anesthesia. After induction of myocardial
infarction, mice received buprenorphine (0.075 mg/kgBW) subcutaneously twice a day for
a period of two days. Sham procedure was conducted in the same way without ligating
the LAD. Treatment with ramipril (10 mg/kgBW/d) started immediately post-MI and
was applied via drinking water. We used two different experimental regimes. Cardiac,
bone marrow and splenic inflammatory response was analyzed 7 days after myocardial
infarction. Additionally, bone marrow response was investigated after 48 h. To investigate
long-term effects of ramipril treatment on survival and vascular function, a chronic heart
failure model after 28 days was used. Mice were deeply anaesthetized and killed by exsan-
guination after puncture of the right ventricle. Blood was collected after injection of 200 µL
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of heparin (1:5); aorta, heart and spleen were dissected carefully and rapidly transferred to
4 ◦C Krebs-Hepes solution.

2.4. Small Animal Echocardiography

High-frequency small-animal ultrasound (HFUS) of the heart was done with a VEVO-
770 and 3100 high-resolution imaging system (VisualSonics®, FujiFilm, Toronto, CA, USA).
We determined the left ventricular function on day 6 after MI. Anesthesia was induced using
isoflurane (1.0–1.5 Vol%). Acquisition of echocardiographic images was conducted with a
linear array transducer (MZ 400, 38 MHz). During the measurements, breathing and heart
rate were normalized due to the anesthetic depth, and body temperature was kept stable.
Cineloops of brightness (B) mode and pictures of motion (M) mode in parasternal long
axis (PLAX) position were acquired and stored. Left ventricular ejection fraction (LVEF),
left ventricular end-diastolic diameter (LVEDD), left ventricular (LV) cardiac output (CO)
and stroke volume (SV) were analyzed and computed from B-mode cineloops in PLAX
position with the VevoLab Software®. Wall motion was scored with 1 for normal, 2 for
hypokinetic and 3 for akinetic. WMSI was determined as sum of all scores divided through
the amount of evaluated segments (adapted from Zhang et al.) [13].

2.5. Flow Cytometry Analysis of Immune Cells

Flow cytometry analysis of heart tissue, blood, bone marrow, spleen and aortic vessels
was performed. A fragment of infarcted myocardial tissue was harvested after previous
flushing. In SHAM-treated mice, a preferably identical piece of non-infarcted myocardial
tissue of the left ventricle was used as a control. The bone marrow was rinsed out of one
whole femur and aortic vessels were thoroughly cleared of adhesive tissue.

2.6. Processing of Heart Tissue, Bone Marrow, Spleen and Aortic Vessels

Cardiac tissue was mechanically fragmented and then digested by the enzyme colla-
genase II (1 mg/mL)/DNase I (50 µg/mL) for 30 min at 37 ◦C. Afterwards, the solution
was passed through a cell strainer (70 µm) and diluted with PBS/2% FCS. Spleens were
compressed through a cell strainer (40µm) without further fragmenting and collected
in PBS/2% FCS. Flushed bone marrow of one femur was resuspended in PBS/2%FCS
and afterwards passed through a 40-µm cell strainer. Aortic vessels were shredded and
digested in liberase solution TM (1 mg/mL) at 37 ◦C for 30 min. Afterwards, the solution
was compressed through a 40-µm cell strainer and solved in PBS/2% FCS, as described
earlier12. ACK lysis buffer was added to whole blood, splenic tissue, bone marrow and
heart tissue for 2 to 5 min to dissolve red blood cells.

2.7. Cell Staining

Fc-Block (anti-CD16/CD32) was added for preventing unspecific bindings of antibod-
ies. Single cell suspensions of the different tissues (heart, spleen and blood) were stained
with subsequent monoclonal antibodies: CD45 (30-F11) in (APC)-eFlour 780, CD90.2
(Thy-1.2) in SB645, NK 1.1 (PK136) in PE-Cy7, F4/80 (BM8) in APC, CD11b (M1/70) in
PerCP-Cy5.5, Ly6G (1A8) in PE, Ly6C (Al-21) in Pacific Blue and Viabilty Dye eFlour 506
monoclonal antibodies. The bone marrow was stained with the following antibodies: CD45-
APC-eFlour 780 (30-F11), CD11b (M1-70), Ter119 (Ter119), Gr-1 (RB6-8C5), B220 (RA3-6B2),
CD19 (eBio1D3), CD8a (53-6-7), CD5 (53-7-3), CD3 (145-2C11), CD2 (RM2-5) all in FITC for
lineage gating, CD34 (RAM34) in Pacific Blue, CD16/32 (93) in APC, CD150 (mShad150) in
PerCPCy5.5, cKit/CD117 (2B8) in SB 645, Sca-1 (D7) in PE-Cy7, CD48 (HM48-1) in AF700,
Viability Dye in eFlour506.

Aortic tissue was stained subsequently: CD45 (30-F11) in APC-eFlour 780, CD90.2
(53-2.1) in brilliant violet 510TM, NK 1.1 (PK136) in PE-Cy7, F4/80 (BM8) in APC, CD11b
(M1/70) in PE, Ly6G (1A8) in FITC, Ly6C (Al-21) in PerCP-Cy5.5 and Viability Dye in
eFlour 506. Analysis was performed with FlowJo software (FlowJo Version 10, Treestar;
Ashland, OR, USA).
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2.8. mRNA Expression Analysis

A 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA)
was used for mRNA expression analysis. Isolation of mRNA from frozen cardiac, splenic
or aortic tissue was conducted by guanidine isothiocyanate phenol chloroform extrac-
tion. Real-time RT-PCR was performed with the CFX96 Real-Time PCR Detection System
(Bio-Rad). Total mRNA (0.125 µg) was mixed with the QuantiTect Probe RT-PCR kit from
Qiagen and probe and primer sets from TaqMan Gene Expression assays were applied
(Applied Biosystems) for the following transcripts: CC-chemokine ligand2 (Ccl2; mouse:
Mm00441242_m1), vascular cell adhesion molecule-1 (Vcam1, mouse:Mm00449197_m1),
TATA-box-binding protein (mouse: Tbp, Mm00446973_m-1), interleukin 1 beta (Il1b;
mouse: Mm00434228_m1), interleukin 6 (Il6; mouse:Mm00446190_m1), inducible nitric
oxide synthase (iNOS, Nos2; mouse: Mm00440485_m1), endothelial nitric oxide synthase
(eNOS, Nos3; mouse: Mm00435204_m1), CXC-motive-chemokine 12 (Cxcl-12; mouse:
Mm00445553_m1), Angiopoetin-1 (Angpt-1; mouse: Mm00456503_m1), Kit-ligand/stem
cell factor (Kitl; mouse: Mm00442972_m1), p47phox (mouse: Mm00447921_m1), tumor
necrosis factor alpha (Tnf; mouse: Mm00443260_m1), angiotensin II receptor type 1 (Agtr1;
mouse: Mm01957777_s1). The relative delta Ct method, normalized to TATA-box-binding
protein as the endogenous control, was used for quantification and mRNA levels were
expressed relative to levels of control.

2.9. Enhanced Chemiluminescence

Oxidative burst was measured in fresh citrate blood by L-012 (8-amino-5-chloro-
7-phenylpyrido [3,4- d] pyridazine-1,4-(2H,3H) dione sodium salt, 100 µM) enhanced
chemiluminescence (ECL) upon 1:50 dilution. Stimulation was performed with zymosan
A (50 µg/mL) as well as phorbol ester dibutyrate (PDBu 10 µM) in PBS buffer containing
Ca2+/Mg2+ (1 mM). Enhanced chemiluminescence (ECL) was analyzed using a TECAN
plate reader (Tecan Group, Männersdorf, Switzerland).

2.10. Flourescence Oxidative Microtopography

Vascular ROS formation was analyzed with dihydroethidium (DHE, 1 µM)-dependent
fluorescence microtopography of aortic cryo-sections as described. After preparation of
aortic rings and incubation in Krebs-Hepes solution (15 min at 37 ◦C), they were embedded
in OCT resin (TissueTek, Torrance, CA, USA) and frozen in liquid nitrogen. Cryosections
of 8 µm were stained with dihydroethidin (DHE, 1 µM in PBS) and incubated for 30 min at
37 ◦C. Fluorescence (green autofluorescence, red DHE fluorescence) was measured with
a Zeiss Axiovert 40 CFL microscope (Zeiss lenses LD A-plan 40×/o.50Ph2 and Axiocam
MRm camera, Zeiss, Oberkochen, Germany).

2.11. Vascular Tone Experiments

To assess the vasodilative and vasoconstrictive characteristics of the vessels, 3-mm
segments of the thoracic aortas were cut and mounted on force transducers (Kent Scientific
Corporation, Torrington, CT, USA; Powerlab, ADInstruments, Spechbach, Germany) in or-
gan chambers, which were filled with Krebs–Henseleit solution, and 10 µM indomethacin
was added and gassed with carbogen. To test vascular function responding to acetyl-
choline (ACh) for testing endothelial-dependent and responding to nitrogylcerine (glycerol
trinitrate, NTG) to test endothelial-independent vasorelaxation, aortic vessel rings were
stretched gradually over 1 h to obtain tensions of 1.0 g. After preconstriction with phenyle-
phrine (PHE) reaching 80% of maximal tone (induced by KCl), relaxation capability in
responding to ACh or NTG was recorded as concentration-relaxation curves.
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2.12. Statistical Analysis

Data are presented as mean ± standard error of the mean, except otherwise noted.
To test whether data were normalized, they had to pass normality tests (D’Agostino
or Kolmogorow–Smirnow test). When normal distribution was assumed, a t-test was
performed to compare the two experimental groups. An ordinary one-way analysis of
variance (ANOVA) followed by a Bonferroni test for multiple comparisons was used for
multiple comparisons of more than two experimental groups. For comparison of more
than two test groups or more than one analysis per group, a two-way ANOVA was applied.
When the data were not normally distributed, two test groups were analyzed by t-test
and Mann–Whitney U test. To compare more than two groups, a Kruskal–Wallis test
was used, followed by Dunn’s test for multiple comparisons. Values of p < 0.05 were
considered significant, marked by asterisks: * p < 0.05; ** p < 0.01; *** p < 0.001. To perform
statistics, Version 8 of GraphPad Prism software (GraphPad Software Inc., La Jolla, CA,
USA) was utilized.

3. Results
3.1. Immediate ACE Inhibition Post-MI Limits Infiltration of Inflammatory Monocytes in the
Ischemic Myocardium due to Reduced Expression of Adhesion Molecules

Early administration of an ACE inhibitor with consecutive RAS blockade improves
overall survival in ischemic heart failure (Figure 1A), without significantly altering left
ventricular function within 6 days after MI. (Figure 1B). The mRNA expression of myeloid
cell adhesion molecules such as CC-chemokine ligand2 (Ccl2) or vascular cell adhesion
molecule-1 (Vcam-1) was reduced in heart tissue, but did not reach significance. Further-
more, we detected reduced mRNA levels of pro-inflammatory chemokines such as inter-
leukin 6 (Il6) or 1 beta (Il1ß) in infarcted myocardium after ramipril treatment (Figure 1C).
In order to investigate the beneficial effects of ramipril treatment in more detail, we per-
formed flow cytometric analysis of infarcted myocardium 7 days after MI. In line with
the diminished myocardial expression of Ccl2, Vcam-1, Il6 and Il1ß in treated animals, we
revealed an accumulation of myeloid cells, especially inflammatory Ly6Chigh monocytes,
into the infarcted myocardium, which was reduced by the trend in mice treated with the
ACE inhibitor (Figure 1D).

3.2. Ramipril Limits the Number of Circulating Monocytes and Retains HPSC Due to
Upregulation of Retention Factors in the Bone Marrow and Spleen

AngII signaling is crucial post-MI, and administration of AngII causes an intense
mobilization of HPSC [10]. We therefore investigated how lowering of AngII levels due to
ACE inhibition impacts emergency myelopoiesis in cardiac ischemia. Circulating levels of
CD11b+ myeloid cells were increased after MI and were not affected by ACE-I treatment;
interestingly, the number of circulating Ly6Chigh monocytes was statistically significantly
lower in the treatment group post-MI (Figure 2A). It has been shown that cardiac ischemia
stimulates the production and release of HPSC. Early and rapid leukocytosis is typical
post-MI, whereas most of these cells are part of the innate immune system and derive
from myeloid origin [3]. Furthermore, 48 h post-MI, we analyzed the bone marrow and
detected an increased number of CD150+CD48− pluripotent hematopoietic stem cells,
Lin−Sca-1−c-Kit+CD34+CD16/32+ granulocyte–macrophage progenitors and Lin−Sca-
1−c-Kit+CD150−CD48− multipotent progenitors. This effect was even more pronounced
in response to ramipril treatment. The amount of precursor cells in the bone marrow
normalized over time and we did not detect a significant difference between the MI groups
with or without ACE-I treatment at 7 d post-MI (Figure 2B). The proliferation of HPSC and
release of mature leukocytes is regulated by the hematopoietic niche and proteins encoded
by genes such as angpt1, kitl, Vcam1 or Cxcl-12 [14,15]. Expression of these genes was
significantly higher in mice with ACE inhibitor treatment 7 d post-MI in the bone marrow
and spleen (Figure 2C,D). In summary, we noticed an extended myeloid hematopoiesis
as a response to myocardial ischemia. ACE inhibition increases the number of progenitor
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cells in the bone marrow but reduces the number of circulating inflammatory myeloid cells.
As a potential mechanism, we found enhanced expression of retention factors in the bone
marrow niche and spleen.
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3.3. Early ACE Inhibitor Treatment Improves Vascular Endothelial Function and Leads to
Attenuation of Vascular ROS and Inflammation in Ischemic Heart Failure

We could recently show that depletion of myeloid cells as well as ARB treatment
improves vascular endothelial function and survival in a disease model of ischemic heart
failure. In line with this, in the current study, ACE inhibitors improved long-term survival
post-MI as well (Figure 1A). Therefore, we investigated the effects of early ramipril treat-
ment after permanent LAD ligation for 28 days on the vascular homeostasis, inflammation
and ROS production. ACE inhibition limited the production of reactive oxygen species
in whole blood assessed by L-012 enhanced chemiluminescence (ECL) stimulated with
PDBu (Figure 3A). Echocardiographic examination and quantification of infarct size by wall
motion score index over 4 weeks showed no difference between the MI- and ACE-inhibitor-
treated groups (Figure 3B). Mice with ischemic heart failure developed vascular endothe-
lial dysfunction, confirmed by organ chamber experiments with isolated aortic rings in
response to the vasodilator acetylcholine (ACh). Endothelial dysfunction post-MI was at-
tenuated in response to 28-d treatment with ramipril (Figure 3C). Endothelial-independent
vascular relaxation in response to glycerol trinitrate (nitroglycerin, NTG) was not affected.
Vessels from MI mice also showed enhanced sensitivity to adrenergic stimulation with
the alpha1 receptor agonist phenylephrine (PHE) (Figure 3D,E). Neurohumoral activation
involving both increased sympathetic outflow and RAAS activation is characteristic of
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heart failure post-MI, and angiotensin II is a potent stimulator of vascular ROS sources such
as NADPH oxidase Nox1 and Nox 2 [16,17]. In line with this, the production of vascular
ROS measured by fluorescence oxidative microtopography was increased in heart failure
mice and improved with ACE inhibition (Figure 3F). Flow cytometry analysis of aortic
tissue showed an attenuated infiltration of myeloid cells, especially Ly6Chigh and Ly6Clow

monocytes, into the vessel wall (Figure 4A). In line with the diminished myocardial infiltra-
tion of myeloid cells in treated animals, the mRNA expression of the chemokine TNFα was
significantly reduced and the adhesion molecules CC-chemokine ligand2 (Ccl2) as well as
the inducible NO-synthase (iNOS) were lowered by this trend (Figure 4B).
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Figure 3. In ischemic heart failure, early ACE inhibitor treatment improves vascular endothelial function due to reduction
of vascular and systemic ROS. (A) Superoxide formation in whole blood measured by enhanced chemiluminescence
after stimulation with PDBu 28 d after MI, n = 7–15 mice per group; (B) High-frequency ultrasound echocardiography
with measurement of wall motion score index (WMSI) 4 weeks post-MI, n = 13 to 14 mice per group; (C–E) Isometric
tension studies of isolated aortic segments 28 d after MI. (C) Contraction-relaxation curves in response to endothelium-
dependent vasodilator acetylcholine (Ach), (D) contraction-relaxation curves in response to endothelium-independent
vasodilator nitroglycerin (NTG), (E) dose-dependent contraction curve in response to the α1-agonist phenylephrine (PHE);
n = 4–12 rings per group; mean + SEM; 2-way ANOVA; * p < 0.05, ** p < 0.01 (Control vs. MI), # p < 0.05, ## p < 0.01,
### p < 0.001 (MI vs. MI + ramipril); (F) Oxidative fluorescence microtopography; right: per group, one representative
photomicrograph is shown. Autofluorescence of laminae produces a green signal, superoxide formation yields a red
fluorescent signal; A, adventitial layer; E, endothelial layer; M, medial layer; left: quantification of superoxide formation in
the vessel wall measured by integrated optical density (IOD), percentage of C57BL6 sham; n = 6 per group; mean + SEM;
one-way ANOVA. p < 0.05, ** p < 0.01, *** p < 0.001.
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Flow cytometry quantification of aortic tissue 28 days after MI vs. sham; left: representative FACS plots, right: quantification
of leucocytes (CD45+), myeloid cells (CD45+CD11b+) and monocytes (CD45+CD11b+Ly6G-Ly6Chigh/low), n = 3–8 mice
per group, mean + SEM, n = 3–8 mice per group; (B) mRNA expression of aortic tissue of Ccl-2, iNOS (Nos2), eNOS and
TNFalpha 28 days after MI vs. sham (+Ramipril); mean + SEM, 1-way ANOVA or Kruskal–Wallis test with Dunn’s multiple
comparisons test. * p < 0.05, ** p < 0.01.

4. Discussion

Cardiac ischemia is followed by an excessive immune response in order to rescue
the damaged tissue. Dying cells release an amount of pro-inflammatory cytokines and
mediators such as TNFα, interleukin 6 and 1 as well as interferon γ, which not only act
locally but also circulate and stimulate HPSC to trigger the production of innate immune
cells [12,18–20]. Such external alarm signals activate intracellular signal cascades and
induce the production of multiple transcription factors such as PU.1 or Egr-1 and activate
HPSC [2,21]. On the other hand, it could be shown that they lead to reduced expression of
bone marrow niche factors such as Cxcl-12, Vcam-1 or Kitl to mobilize innate immune cells
to the blood circulation [22–24]. These mechanisms are in part controlled by sympathetic
activation due to ß3 adrenergic receptors [22]. The effects of other hormones, particularly
AngII, in this process were incompletely understood. In the current study, we were able
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to present new insights into AngII interactions with the innate immune system after MI,
which could be diminished by pharmacological blockade of AngII synthesis. We could
show that ACE inhibition by ramipril limits the number of circulating Ly6Chigh monocytes
one week after MI. We could also demonstrate upregulation of retention factors and
higher amounts of myeloid progenitor cells in the bone marrow and spleen in ramipril-
treated animals 48 h after MI, indicating increased retention of mature myeloid cells in the
bone marrow. Studies in the past showed that ACE inhibitors attenuate myeloid tissue
infiltration by reducing levels of monocyte chemoattractant protein-1 (MCP-1). Moreover,
limited expression of vascular cell adhesion molecule-1 in hematopoietic niches (VCAM-1)
could be shown [25,26].

After survival of an acute MI, there is still a high risk for recurrent cardiovascular
events. Within the first year, the frequency of a secondary MI, stroke or cardiovascular death
is 8–12%, despite optimal medical treatment [27–29]. A meta-analysis concluded that early
administration of ACE inhibitors within 72 h to 14 days post-MI lowers the risk of further
cardiovascular events and improves survival in humans, as the SAVE trial demonstrated as
well [30–32]. Exact underlying mechanisms are still incompletely understood and probably
manifold, but with our data, we could indicate suppressed systemic inflammation with
pharmacological ACE inhibition. In the long-term experiments, ACE inhibition showed
less accumulation of inflammatory myeloid cells in the vascular wall and less NADPH-
oxidase-derived reactive oxygen species. Attenuated vascular oxidative stress indicated
beneficial effects on endothelial function, which we analyzed in isometric tension studies.

The expression of ACE is also significantly increased at the edge of infarcted scars
and it is well known that AngII, as the effector hormone, is crucial in the cardiac remod-
eling process after MI [33]. In line with this, we could detect less myeloid infiltration of
ischemic cardiac tissue and less expression of inflammatory cytokines seven days after MI
in ramipril-treated mice, although the results were not statistically significant. Significant
effects on cardiac function within four weeks of treatment could be excluded in our study,
which was underlined by unaltered echocardiographic findings in the different groups.
Besides the reduction of cardiac afterload via endothelial AngII type 1 receptors, there
are more mechanisms contributing to the pharmacological effects of RAS blockade. ACE
inhibitors were shown to improve the oxygen supply/demand ratio of the myocardium by
attenuating AngII-induced vasoconstriction and inotropic activity, increasing the endothe-
lial ability to relax vascular smooth muscles.

Moreover, there is growing evidence that an MI and consecutive ischemic heart disease
leads to persistent systemic inflammation. In this context, it has been shown that patients
with higher inflammatory burden have an elevated risk for additional cardiovascular
events [20,34]. Treating long-lasting inflammation is at the center of current cardiovascular
research [35,36]. Currently, it is unclear whether current therapies are able to tackle these
effects, so we tried to elucidate the pleiotropic effects of RAS inhibition after cardiac
ischemia [3,37]. In past studies by our group, we already showed the strong effects of
ARB treatment on persistent systemic inflammation four weeks after MI, which were
comparable with the current study in improving vascular function. Although we did not
analyze acute myelopoiesis after MI, we could show even stronger effects on suppressing
vascular infiltration by myeloid cells 28 d after MI.

5. Limitations of the Study

Treatment with the ACE inhibitor ramipril followed already published protocols,
but was not verified in our study by blood pressure recordings or by measurements
of circulating AngII levels. Nevertheless, we detected effects on systemic and tissue-
specific inflammation, which led us to conclude that our treatment has been effective. In
some experiments, the number of used animals was low and our results failed to reach
statistical significance. The corresponding results are indicated in the results section and
the interpretation of the data should be carried out with careful consideration. Furthermore,
the expression of the cytokines, adhesion molecules and retention factors was only verified
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by real-time PCR analysis at the mRNA level. Conformation of the protein levels was not
performed.

6. Conclusions

Taken together, our findings allow us to conclude that, besides the well-known benefi-
cial effects on cardiac remodeling and blood pressure control, there are additional effects
of RAS inhibition on emergency myelopoiesis after MI, resulting in less long-lasting sys-
temic inflammation and improving endothelial function and survival without enhancing
cardiac function.
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