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Abstract
Machine learning-based analysis ofmedical images often faces several hurdles, such as the lack of
training data, the curse of the dimensionality problem, and generalization issues. One of themain
difficulties is that there exists a computational cost problem in dealingwith input data of large size
matrices which representmedical images. The purpose of this paper is to introduce a framelet-pooling
aided deep learningmethod formitigating computational bundles caused by large dimensionality. By
transforming high dimensional data into low dimensional components byfilter banks and preserving
detailed information, the proposedmethod aims to reduce the complexity of the neural network and
computational costs significantly during the learning process. Various experiments show that our
method is comparable to the standard unreduced learningmethod, while reducing computational
burdens by decomposing large-sized learning tasks into several small-scale learning tasks.

1. Introduction

Recently,medical imaging is experiencing a paradigm shift due to a remarkable and rapid advance in deep
learning techniques. Deep learning techniques have expanded our ability via sophisticated disentangled
representation learning through training data, and appear to show superiority of performance in various
medical imaging problems including undersampledmagnetic resonance imaging (MRI), sparse-view computed
tomography (CT), artifact reduction, organ segmentation, and automated disease detection. In particular, U-net
(Ronneberger et al 2015), a kind of convolutional neural network, seems to show remarkable capability of
learning image representations. However, there are some hurdles to overcome, one of which comes from the
high dimensionality, i.e., the high pixel dimension in 2Dor 3D, ofmedical images. This paper addresses away to
resolve this issue through a so-called framelet pooling aided deep learning network.

Machine learning performance is closely related to the number, the quality, and the pixel dimensionality of
the sampled data. For ease of explanation, let us consider a simple question to learn an unknown function

[ ] [ ]f : 0, 1 0, 1d from a given sample ( )yx, , where x is an input gray scale image lying in [ ]0, 1 d and
( )=y f x is the corresponding output on the interval [ ]0, 1 . Then one can ask howmany training samples are

needed to approximate fwith a given tolerance > 0. It is well-known that for Lipschitz continuous function f,
we need to sample ( )-O d points (Mallat 2016). In addition, the author in Barron (1994) observed that the

estimation error of the function f by 1 hidden layer neural networks is given by ⎜ ⎟
⎛
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where ndata is the number of training data, m is the number of neurons in the hidden layer, and cf is a constant
depending on the regularity of f. Thismeans that in the case of =d 5122 (i.e. considering 512× 512 images) and
m = d, we roughly need huge training data ( )n = O 10data

12 to achieve the error of ( )-O 10 1 . This high number
of required training datamakes the problem intractable, especiallywhendata lies in the highdimensional space.
Such a phenomenon is referred as the curse-of-dimensionality in approximation sense. Even though the effect of
dimensionality ondeepnetworks is relativelyweaker than shallowones (Bruna andMallat 2013, Pascanu et al 2013,
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Mhaskar andPoggio 2016) in approximation sense, deep learning requires huge computational scale for training
process. Thus, deepnetworkswith highdimensional data also experience the curse-of-dimensionality in termsof
computational burden.

In the literature, framelets are known to be effective in capturing key information of images. This is due to
themultiscale structure of the framelet systems, and the presence of both lowpass and high passfilters in the
filter banks, which are desirable in sparsely approximating imageswithout loss of information (Dong et al 2017).
In this work, we propose a framelet-based deep learningmethod to reduce computational burdens for dealing
with high dimensional data in the learning process. Thismethod, called a framelet pooling, is based on the
decomposition of a d-dimensional input-output pair ( )x y, into several d 2 k2 -dimensional pairs
{( ) }W a =a a rx y, : 1, ,k k, , , where eachW ak, and ak, are ´d d2 k2 matrices corresponding to kth level
framelet packet transform (Mallat 2009). Instead of learning the pair of high dimensional original data ( )x y, , the
proposedmethod tries to learnmuch lower dimensional pairs ( )Wa a x y,k k, , in parallel passion, so thatwe can
achieve the computational efficiency in dealingwith the large size images.

As an application of our proposedmethod, we deal with the undersampledMRI (Hyun et al 2018) and the
sparse-viewCTproblem (Jin et al 2017), where hugememory problemsmay arise in recovering high resolution
images. Experiments on undersampledMRI and sparse-viewCT show that our framelet pooling aided reduced
method provides very similar performance to the standard unreducedmethod, while reducing the computation
time greatly by reducing the dimension of inputs and learning parameters in neural networks.

2.Method

Both undersampledMRI and sparse-viewCTproblem aim tofind a reconstruction function f, whichmaps from
anundersampled data P (violatingNyquist criteria) to a clinicallymeaningful tomographic image y . Here, the
undersampled data P can be expressed as the subsampling of the fully-sampled data P (satisfying theNyquist
criterion)

( )= P P, 1

where  is a subsampling operator. The standardMRI andCTuse the fully-sampled data P to provide
tomographic images, where the reconstruction functions f inMRI andCT are the inverse Fourier transform and
inverse Radon transform, respectively. However, whenwe use the undersampled data P , these standard
methods do notwork as theNyquist criterion is not satisfied anymore. (See figures 1 and 2.) For the sake of
clarity, we shall briefly state themathematical framework of undersampledMRI and sparse-viewCT in the
following subsections.

2.1. UndersampledMRI
Let ( )zy be a distribution of nuclear spin density at the position z=(z1, z2). Themeasured k-space dataP is
governed by the Fourier relation

( ) ( )·F ò= = p x-


z zP y y e d , 2z2 i

2

where ξ=(ξ1, ξ2) (Nishimura 2010). Therefore, with the fully-sampled dataP, the reconstruction image y can
be obtained by taking the inverse Fourier transform to themeasured dataP,

( )F= -y P. 31

Note that the direct inversionmethod (3) can also be applied to the undersampled data P ,

( )F= -  y P . 41 *

Here, * is an adjoint operator of  in the ℓ2 space. However, the image y obtained from (4) contains aliasing
artifacts as P violates theNyquist criterion (see figure 1).

2.2. Sparse-viewCT
InCT, the tomographic image ( )zy can be regarded as the distribution of linear attenuation coefficients at the
position z=(z1, z2). For CTdata acquisition, x-ray beams are transmitted at various directions

≔ ( )q j j j p cos , sin , 0 2 . Under the assumption ofmonochromatic x-ray generation, the projection
dataP at the direction θ is dictated by the following Radon transform

ℓ( ) ( )R ò= =
q

zP y y d , 5
L

z
s,

where Lθ,s is the projection line ≔ { · }qÎ =q L z z s:s,
2 (Seo andWoo 2013).With the fully-sampled dataP

satisfying theNyquist criterion, y can be reconstructed by the inverse Radon transform

2
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( )R= -y P. 61

For the undersampled data P , which ismeasuredwith the low sampling frequency along the projection-
view, we can apply the direct inversion formula (6) by filling zeros to unmeasured parts of undersampled data

Figure 1.A k-space data in the standardMRI system is oftenmeasuredwith respect to two encoding directions, frequency direction x1
and phase encoding direction x2. A total time forMR imaging is, roughly speaking, is proportional to the number of phase encodings,
since each phase encoding requires a repeated excitation process of nuclear spin. Thus, the undersampledMRI reconstruction
problemdeal with how to reduce the number of phase encoding lines by undersamplingP such like P , and keep its image quality
simultaneously. However, the reconstruction image y obtained from the direct inversionmethod contains the aliasing artifact in the
reconstruction domain, according to the Poisson summation formula. Therefore, we aim to develop a function f to recover the
artifacted image #y to the high quality image y .

Figure 2.A sparse-view sinogramdata is acquired from a sparsemeasurement of CT scannerwith respect to projection view. The
sparse-angle sinogramdata can be considered as a subsampled sinogram P from a full-view sinogramP. The direct application of R
to sparse-angle sinogramdatawith zero-filling * generates the streaking artifacts in the reconstruction image y .Main objective of
sparse-angle computed tomography is to find a function f to recover the artifacted image #y to the high quality image y .

3
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( )R= -  y P . 71 *

However, the reconstruction image y contains streaking artifacts, which result from the violation ofNyquist
criterion. Figure 2 shows the schematic and visual descriptions of the sparse-viewCTproblem.

2.3. Preliminaries on framelets
Provided here is a brief introduction on tight frames and framelets. Interested readersmay consult e.g. (Ron and
Shen 1997,Dong and Shen 2012, Shen andXu 2013) for the detailed surveys. In this paper, we only consider the
2-dimensional case as we focus on the undersampled 2-dimensional image reconstruction. Note, however, that
it is not hard to generalize into d-dimensional cases with d 3.

For a given { } ( )y yY = Í L, , r1 2
2 , an affine systemX (Ψ) is the collection of the dilations and the shifts

of the elements inΨ:

( ) { ≔ ( · ) } ( )y y aY = - Î Îa a    X r nk k2 2 : 1 , , . 8n
n n

k, ,
2

We say thatX (Ψ) is a tight wavelet frame on ( )L2
2 if we have

∣ ∣ ( )( )  åå å y= á ñ
a

a
= Î Î


 

f f , 9L

r

n
n

k
k

2

1
, ,

2
2

2

2

for every ( )Î f L2
2 . In this case, each ya is called a framelet, and yá ñaf , n k, , is called the canonical coefficient

of f.
The constructions of (anti-)symmetric and compactly supported frameletsΨ are usually based on a

multiresolution analysis (MRA); we firstfind some compactly supported refinable functionfwith a refinement
mask q0 such that

( ) ( · ) ( )åf f= -
Î

q k k2 2 . 10
k

2
0

2

Then theMRAbased construction of { } ( )y yY = Í L, , r1 2
2 is tofind finitely supportedmasks aq such that

( ) ( · ) ( )åy f a= - =a a
Î

rq k k2 2 , 1, , . 11
k

2

2

The sequences q q, , r1 are calledwavelet framemask or the high passfilters of the system, and the refinement
mask q0 is also called the low passfilter.

The unitary extension principle of (Ron and Shen 1997) provides a general theory of the construction of
MRAbased tight wavelet frames. Briefly speaking, as long as { }q q q, , , r0 1 are compactly supported and their
Fourier series ( ) ( ) · x = å x

a aÎ
-

q q k ek
ki

2 satisfy

∣ ( )∣ ( ) ( ) ( )  å åx x x n= + =
a

a
a

a a
= =

q q q1 and 0 12
r r

0

2

0

for all { } ⧹{ }n pÎ 00, 2 and [ ]x p pÎ - , 2, the affine systemX (Ψ)with { }y yY = , , r1 defined by (11) forms a
tight frame of ( )L2

2 , and thefilters { }q q q, , , r0 1 form a discrete tight frame on ℓ ( )2
2 .

In the discrete setting, the first level framelet decomposition operator ( )W 1 is defined as

[ ] ( )( ) W W W W= , , , 13T T
r

T T1
0,0 0,1 0,

whereW a0, is the ´-d d22 2 2 matrix given by

( ( ·))W =  - " Îa a x x q x, .d
0,

2

Here,  stands for 2-dimensional down-sampling operator and is convolution operatorwith stride 1.
Likewise, we can define the second level framelet decomposition ( )W 2 by

[( ) ( )
( ) ( ) ] ( )

( ) 
 

W W W W W

W W W W

= , , ,

, , , , 14

T
r

T

r
T

r r
T T

2
1,0 0,0 1,0 0,

1, 0,0 1, 0,

whereW a1, is the ´- -d d2 22 4 2 2 matrix given by

˜ ( ˜ ( ·)) ˜W =  - " Îa a
-

 x x q x, .d
1,

22 2

Wecan continue the above process to define the kth level framelet decomposition operator ( )W k . Then since the
filter { }aq satisfies (12), we have ( )( ) ( )W W = l T l for each l=1, 2,L. Finally,figure 3 illustrates two examples
of framelet decompositions usingDaubechies wavelet(db4) (Daubechies 1988) and piecewise linear B-spline
frame (Shen andXu 2013).

2.4. Proposed deep learning approach for undersampled reconstruction
The objective of the undersampled reconstruction problem is to develop a deartifactingmap f, which converts

Î y d2
(artifacted image) to Î y d2

(artifact removed image)with d2 being a pixel dimension of reconstructed

4
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image. In particular, deep learning techniques, such asU-net, infer f byminimizing training data-fidelity :

( ( ) ) ( )( ) ( )Lå=
Î =

f f x yargmin , 15
f i

N
i i

1net

using a set of training data ( )( ) ( )
=x y,i i

i
N

1. Here,N is the number of training data, ( )x i denotes the artifact image
instead of ( )( )y i ,net is a set of all learnable functions from a user-defined deep learning network architecture,
andL is a user-defined energy-loss function to evaluate themetric between deep learning output ( )( )f x i and
label ( )y i . However, if the pixel dimension of input increases, the total computational complexity in the training
process increase largely. To address this curse-of-dimensionality issue, we propose the framelet pooling aided
deep learningmethod to learn the deartifactingmap f indirectly.

LetW and be framelet decomposition operators defined as in subsection 2.3. The proposed framelet
pooling deep learning network aims to infer the relation between ( )W xk1 and ( ) yk2 in the following least-
squaredminimization sense:

( ( ) ) ( )( ) ( ) ( ) ( )L Wå=
Î =




f f x yargmin , . 16
i

N
k i k i

f 1net

1 2

Here, each ( )( ) ( )W axk i1
1
and ( )( ) ( )

a yk i2
2
are images with -d 2 k2 2 1 and -d 2 k2 2 2 pixel dimension, respectively.

For example, let ( ) 2 be the second level Daubechies 4 tabwavelet decomposition. If the second level
Daubechies 4 tabwavelet decomposition is taken for ( )W k1 and ( ) k2 in the equation (16), the proposed deep
learningmethod tries tofind the function f satisfying ( )( ) ( )= f x y2 2 in the sense of (16), as shown in
figure 4.

Compared to the direct deep learning scheme (15), the framelet-pooling aided deep learningmethod (16) is
expected tomitigate the total computational complexity and time caused by high dimensional data in the
learning process. In this paper, we test only the case that training inputs and labels are decomposed using same
framelet decomposition ( )W k . However, ourmethod is not restricted only in this specific case.

3. Experiments and results

3.1. Experimental set-up for undersampledMRI
Let { }( ) Î ´

=y i
i
N

MR
256 256

1denote the set ofMR images reconstructed with theNyquist sampling. Using { }( )y i
MR

,

we compute the training input { }( ) Î ´
=x i

i
N

MR
256 256

1by

( )( ) ( )
  F F= -  



x y , 17i i

P

MR
1

MR
*

Figure 3. Framelet decomposition using various framelets (Db4 andB-spline); (a) original CT image yCT andMR image yMR, (b)–(c)
first and second level framelet decomposition usingDaubetchies 4 tabwavelet, denoted by ( ) 1 and ( ) 2 , of the images yCT and yMR,
and (d)–(e)first and second level framelet decomposition using piecewise linear B-spline framelet, denoted by ( )W 1 and ( )W 2 , of the
images yCT and yMR.
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whereF is the 2Ddiscrete Fourier transform,F-1 is the 2-dimensional discrete inverse Fourier transform, and
 is a specifically user-chosen subsampling operator. In our experiments, we use theMR images ( )y i

MR
obtained

fromT2-weighted turbo spin-echo pulse sequencewith 4408ms repetition time, 100ms echo time, and 10.8ms
echo spacing (Loizou et al 2011). The Fourier transform and its inverse are computed viafft2 andifft2 in
the Python packagenumpy.fft. Finally, for the sampling strategy, we choose the uniform subsamplingwith
factor 4 and 12 additional low frequency sampling among total 256 lines (Hyun et al 2018).

In order to test our proposedmethod, we decompose dataset using k level framelet decomposition ( )W k

with various filter banks.We obtain

{ } ( )( ) ( ) ( ) ( )W W =x y, , 18k i k i
i
N

MR MR 1

where both ( ) ( )W xk i
MR and

( ) ( )W yk i
MR contains r

k pairs of ´256 2 256 2k k2 2 image. Here, k is the decomposition
level and r is the number offilter aq .

3.2. Experimental set-up for sparse-viewCT
Let { }( ) Î ´

=y i
i
N

CT
512 512

1be a set of CT images reconstructedwith theNyquist sampling. The corresponding
deep learning training inputs are computed in the following sense;

( )( ) ( )
  R R= -  



x y , 19i i

P

CT
1

CT
*

whereR is the discrete Radon transform,R-1 is thefiltered-back projection algorithm, and  is a user-defined
sampling operator. In our implementations, we use the projection algorithmradon andfiltered back-
projection algorithmiradon in the Python packageskimage.transform for computingR and its inverse
R-1, respectively. Uniform subsamplingwith factor 6 in terms of projection-view is also used for  in (19).

Applying the same process used to generate a dataset (18) for undersampledMRI experiments, we obtain the
following decomposed dataset for sparse-viewCTproblem;

Figure 4.Aone example of the proposedmethodwithDaubechies 4 tabwavelet for sparse-viewCTproblem. The dataset
{ }( ) ( )

=x y,i i
i
N

1 is decomposed byDaubechies 4 tapwavelet, ( ) 2 . Our proposed network tries to infer the relation between
{ }( ) ( ) ( ) ( )

= x y,i i
i
N2 2

1.
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{ } ( )( ) ( ) ( ) ( )W W =x y, , 20k i k i
i
N

CT CT 1

where ( )W k is a k level framelet decomposition.
In ourwhole experiments, we use afirst and second level framelet decomposition (k=1, 2)with three

different framelets (Haarwavelet(Haar), Daubechies 4 tapwavelet(Db4), and piecewise linear B-spline
framelet(PL)).

3.3. Network configuration
To test our proposedmethod, we adapt theU-net architecture (Ronneberger et al 2015), as shown infigure 5,
where thefirst half of network is the contracting path and the last half is the expansive path. At the first layer in
U-net infigure 5, the input ( )W xk is convolvedwith the set of convolutionfilters ( )C 1 so that it generates a set of
featuremaps ( )h 1 , given by

( )( ) ( ) ( )W= h C xReLU ,k1 1
1

where ReLU is the rectified linear unit ( ) { }=x xReLU max , 0 and1 stands for the convolutionwith stride 1.
We repeat this process to get ( )( ) ( ) ( )= h C hReLU2 2

1
1 and applymax pooling to get ( )h 3 . Through this

contracting path, we can obtain low dimensional featuremaps by applying either convolution ormax pooling.
In the expansive path, we use the 2×2 average unpooling instead ofmax-pooling to restore the size of the
output. To restore details in image, the upsampled output is concatenatedwith the correspondingly feature from
the contracting path. At the last layer a 1×1 convolution is used to combine each featurewith one integrated
feature (Ronneberger et al 2015).

TheU-net in the top rowoffigure 5will be denoted by ( )- NET0 . TheU-net in themiddle row, denoted by
( )- NET1 , is the reduced network by eliminating two 3×3 convolution layers and one pooling/unpooling

layer in thefirst and last part of ( )- NET0 . Similarly, ( )- NET2 is the reduced network by eliminating 3×3
convolution layers and pooling/unpooling layer in thefirst and last part of ( )- NET1 . Thus, this process can be
viewed as the replacement of operations with unknown and trainable parameters into framelet operations with
known andfixed parameters. In our experiments, ( )- NET0 is used to learn f in the sense of direct learning
(15). The reduced ( )- NETk (k=1, 2) is trainedwith k level framelet decomposed dataset in the sense of (16).

3.4. Experimental result
All training processes are performed in two Intel(R)Xeon(R)CPUE5-2630 v4, 2.20 GHz, 128 GBDDR4RAM,
and fourNVIDIAGTX-1080ti computer system.We initialize all weights by a normal distributionwith zero-
centered and 0.01 standard deviation, under the Tensorflow environment (Abadi et al 2015).We use the ℓ2 loss
for the loss functionL. The loss function isminimized using theAdamOptimizer and the batch normalization
for fast convergence (Kingma andBa 2014, Ioffe and Szegedy 2015). For stability on training, the small learning
rate 10−6 is used. In order to guarantee the convergence of loss function, the network is trained until the training
loss seems to converge sufficiently.

Figure 5. Image restoration performances of ( )- NET0 (unreduced), ( )- NET1 (one pooling), and ( )- NET2 (double pooling)
using undersampledMRI and 1500 training data using various filter bankswith rfilters.We set all networks to have 16 feature depth,
whichmeans that channels in the network paths aremultiples of 16. Although the numbers of learning parameters and training speed
are very different, thefinal results are very similar.
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To avoid overfitting issue, we use the lightenedU-net network ( ) 0 -net, compared to the original deep
U-net structure suggested in the paper (Ronneberger et al 2015), and apply the batch normalization technique,
known as one efficient way tomitigate the overfitting phenomenon (Ioffe and Szegedy 2015). Noting that test
errors, as shown in tables 2 and 4, are approximately zero, there is no overfitting or underfitting.

Figures 5 and 6 show reconstruction results from ( )- NET0 , ( )- NET1 , and ( )- NET2 . Threemodels
show similar reconstruction performances, regardless of their originated problem and their original data
dimension.Quantitative evaluations and comparisons for the application on the undersampledMRI problem
are summarized in tables 1, 2, andfigure 7. For the sparse-viewCT application, evaluations and comparisons are
given in tables 3, 4, andfigure 8. Tables 1 and 3 shows comparisons of average computational time per epoch
among ( )- NET0 , ( )- NET1 , and ( )- NET2 . The average computational time is computed by dividing the
total computational time by the total number of epoch. Tables 2 and 4 contains test error evaluations and
comparisons using twodifferentmetrics;mean square error (MSE) and structure similarity (SSIM) (Wang et al
2004).

These experimental results support the fact that the proposedmethod reduces the total computational time
efficiently and provides competitive results compared to the direct learning algorithmusing high dimensional

Figure 6. Image restoration performances of ( )- NET0 (unreduced), ( )- NET1 (one framelet pooling), and ( )- NET2 (double
framelet pooling) using undersampledMRI and 1500 training data.

Table 1.Table of the average computational time per epoch(second/epoch) in the undersampledMRI problem.

Average computational time per epoch (second/epoch)

# of training data ( )- NET0

( )- NET1 ( )- NET2

Haar Db4 PL Haar Db4 PL

1500 11.798 03 4.664 32 4.430 48 8.323 20 3.636 46 3.757 58 12.988 98

1000 7.650 65 3.431 65 3.258 52 5.616 59 2.441 17 2.532 21 8.312 133

500 3.763 03 1.704 58 1.753 37 2.654 04 1.273 35 1.311 74 4.675 96

100 0.718 29 0.335 26 0.334 08 0.546 98 0.223 54 0.257 95 0.940 70
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images. Namely, our reducedmethod provides very similar performance to the standard unreducedmethod
( ( )- NET0 ), while reducing the computation time greatly by reducing the input dimension.

We also test our proposedmethodwith three different framelets and compare performances, as shown in
tables 2 and 4 for the quantitative evaluation and tables 1 and 3 for the computational time. Experimental results
report thatHaar andDb4Wavelet reduce the computational timemore efficiently than PL framelet, but PL
framelet exhibits the better performance thanHaar andDb4Wavelet. Compared toHaar andDb4 consisting of
4filter banks, PL framelet has 9filter banks (i.e. the number offilter banks equals the size of filters), which can
increase the computational time.However, it should be noted thatHaar andDb4 are orthonormal bases while
PL framelet is a redundant tight frame system. Thismeans that, thanks to the redundancy, it is likely that the
error generated by the nonlinear deep learning process can lie in the nontrivial null space of the reconstruction
operator, which canmake the PL framelet yield better results than the orthonormal basis (Haar andDb4) (Dong
et al 2017).Wewould like tomention that the computational time increases in the case of ( )- NET2 with PL
framelet in the undersampledMRI problem, compared to the original network ( )- NET0 .We can observe
that the reduction of computational time depends on the feature depth of network. In order to reduce total
computational complexities of experiments as possible, our networks are set to have 16 feature depth, as
described infigure 5.However, when the feature depth increases, ( )- NET2 with PL framelet also exhibits the
computational time reduction ability, as shown in the table 5.

Let us compare amemory requirement on a training process of eachmodel, based on the estimation of
memory occupation in the paper (Schlemper et al 2018). The ( ) 0 -net has 341152 trainable parameters, which

Table 2.Quantitative test error evaluations for undersampledMRI problemusing two differentmetrics.

MSE(∼10−8)

# of training data ( )- NET0
( )- NET1 ( )- NET2

Haar Db4 PL Haar Db4 PL

1500 3.427 66 3.734 20 3.716 04 3.613 57 4.752 85 4.962 53 4.725 60

1000 3.723 76 3.998 06 3.975 93 3.931 89 5.030 00 5.032 32 4.917 54

500 4.415 41 4.477 17 4.622 86 4.374 41 5.382 41 5.474 81 5.252 60

100 6.088 67 6.667 04 6.714 41 6.474 48 7.131 72 7.141 36 6.916 11

SSIM

# of training data ( )- NET0 ( )- NET1 ( )- NET2

Haar Db4 PL Haar Db4 PL

1500 0.812 43 0.792 51 0.798 06 0.799 25 0.746 33 0.737 04 0.736 48

1000 0.801 22 0.787 88 0.788 61 0.790 88 0.735 94 0.735 46 0.744 40

500 0.774 55 0.772 60 0.772 19 0.769 96 0.713 41 0.714 64 0.719 55

100 0.709 40 0.698 64 0.708 57 0.720 80 0.648 15 0.647 67 0.673 78

Table 3.Table of the average computational time per epoch in the sparse-viewCTproblem.

Average computational time per epoch (second/epoch)

# of training data ( )- NET0

( )- NET1 ( )- NET2

Haar Db4 PL Haar Db4

1500 39.476 37 17.292 48 18.342 27 31.422 37 12.099 81 11.755 51

1000 26.425 27 11.803 29 12.341 89 20.916 42 8.276 48 8.214 92

500 13.006 67 6.000 89 6.063 89 10.544 22 4.102 79 4.035 06

100 2.465 22 1.040 74 1.124 65 1.953 24 0.752 94 0.811 97
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can occupy 1.36MBmemory in 32-bits single precision system.On the other hands, the ( ) 1 -net and ( ) 2 -net
contain 78 976 and 16 384 unknown variables occupying 0.30 MB and 0.06 MBmemory, respectively. Here, the
number offilter r is assumed to be 4. In a training stage, an efficient back-propagation requires storage of all the
intermediate activationmaps. In our networks, activationmaps in each convolution layer should be stored.
Thus, amemory requirement can be estimated roughly by

( )å ´ ´ ´ ´N d N 4 bytes 2, 21
convolution layer

batchsize size of feature feature depth

where Nbatchsize is amini-batch size, dsize of feature is a pixel dimension of feature, and Nfeature depth is a depth of
feature in each convolution layer.Here, wemultiply 2, because a forward computation and backward gradient
updating exist in a training procedure. In our experiments, we used amini-batch size 8 and set feature depths to
bemultiples of 16. In the case of CT imagewith 512 by 512 pixel resolution, the ( ) 0 -net, ( ) 1 -net, and ( ) 2 -net
require approximately 1.34 GB, 0.40 GB, and 0.10 GBmemory, respectively. Thus, the proposedmethod can
reduce significantly the total occupiedmemory in a training stage of deep neural networks.

Table 4.Quantitative error evaluations for sparse-viewCTproblemusing two differentmetrics.

MSE(∼10−8)

# of training data ( )- NET0

( )- NET1 ( )- NET2

Haar Db4 PL Haar Db4

1500 2.620 30 2.920 02 2.956 05 2.935 51 3.875 06 4.285 39

1000 2.694 98 3.031 15 3.101 20 2.973 95 4.200 75 4.427 56

500 2.803 45 3.213 23 3.326 94 3.093 97 4.420 89 5.402 28

100 3.814 32 4.321 76 4.725 59 4.101 38 5.657 74 7.582 66

SSIM

# of training data ( )- NET0 ( )- NET1 ( )- NET2

Haar Db4 PL Haar Db4

1500 0.876 31 0.869 37 0.866 60 0.869 59 0.847 95 0.828 65

1000 0.875 33 0.867 61 0.863 57 0.869 25 0.844 44 0.823 83

500 0.874 51 0.864 93 0.857 50 0.867 28 0.839 32 0.809 27

100 0.860 39 0.848 86 0.840 55 0.848 63 0.828 47 0.804 64

Figure 7.Qualitative comparison of the proposedmethod for undersampledMRI reconstruction problem.
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Lastly, we also test our proposedmethod in the casewhen the original deepU-net structure, described in the
paper (Ronneberger et al 2015), is used for ( ) 0 -net. As shown in table 6, we can observe that the proposed
method also shows a powerful ability on reducing computational burdens and provides competitive
reconstruction results.

Table 5.Table of the average computational time per epoch in
undersampledMRI problem,when using the proposedmethod
with PL framelet and 1000 training data (N=1000).

Average computational time per epoch (second/epoch)

Feature depth ( )- NET0 ( )- NET1 ( )- NET2

16 7.650 65 5.616 59 8.312 133

32 12.780 46 6.186 188 8.634 091

64 26.208 05 8.805 362 8.979 816

Table 6.Performance evaluations (average computational time per epoch (second/epoch) andmean squared error (MSE)) of the
proposedmethod for undersampledMRI and sparse-viewCTproblem, when the original deepU-net structure is used for

( ) 0 -net and each network is trained from1500 training data (N=1500).

Performance evaluations on undersampledMRI problem

Performance ( )- NET0
( )- NET1 ( )- NET2

Haar Db4 PL Haar Db4 PL

Computation time 52.705 35 15.297 09 15.568 55 20.259 11 7.758 19 7.621 06 22.347 41

MSE (~ -10 8) 3.742 12 4.208 49 4.192 82 4.090 67 4.812 88 4.645 87 4.108 83

Performance evaluations on sparse-viewCTproblem

Performance ( )- NET0 ( )- NET1 ( )- NET2

Haar Db4 PL Haar Db4

Computation Time 184.496 52 53.632 90 53.265 28 70.731 39 20.255 99 21.359 46

MSE (~ -10 8) 0.261 50 0.270 65 0.272 49 0.269 25 0.294 37 0.303 45

Figure 8.Qualitative comparison of the proposedmethod for sparse-viewCT reconstruction problem.
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4. Conclusion anddiscussion

In this paper, we proposed the framelet pooling aided deep learning network to reduce computational burdens
in the training process. The proposedmethod decomposes large-scale learning tasks into several small-scale
learning tasks through the framelet packet transformation so that we can handle large-scalemedical imaging in a
limited computing environment. Experimental results on undersampledMRI and sparse-viewCT
reconstruction problems show that our framelet poolingmethod is at least comparable to the standard deep
learning basedmethod, but is able to reduce total computational time in the training process significantly.
Hence, we expect that ourmethod is not limited to the 2-dimensionalmedical imaging problem. It seems
possible that the framelet poolingmethod can be extended to deep learning problemswith large-scale
3-dimensionalmedical imaging, which inevitably suffers fromhigh computational complexity due to the high
dimensionality of dataset.

Deep convolutional neural networkwith a large size of receptive field seems to be advantageous in capturing
global features and properties, compared to patch-wise learning approaches. For instance, the local patch-based
approach can solve denoising problems efficiently, since noise patterns are quite similar in each local patch.
However, this approachmay not deal with aliasing artifacts, which occur in the undersampledMRI problem
with uniform subsampling described in the section 2.1 andfigure 1. It is because aliasing patterns in figure 1 are
generated by the global image domain. To deal with global aliasing artifacts, U-nets without framelet pooling
possess high capacity, which requires huge computation power and a large number of data for training the
network.Ourmethod is designed to enlarge the receptive field size without increasing a total capacity by using
the concept of framelet pooling.

In the experiments, we can see that the choice of filter banks indeed affects the performance of the proposed
method. The use of tight frame can increase the reconstruction accuracy thanks to rich representation under the
redundant system, but the computational time reduction ability can bemarginal due to the increasing number
of convolutions. In contrast, the orthogonal wavelet representation provides high computational time reduction
by only using 4filters, but generates less accurate results. Hence, the future workwill focus on the construction
of framelet transformationwhich is both adaptive to a given task (Cai et al 2014) and computationally efficient. It
would also be interesting to provide a theoretical analysis on the approximation property of our deep learning
network.

Compared to the recent paper (Ye et al 2018) on framelet-based deep learning, we focus on dimensionality
reduction of data, where analytic framelet filter banks allowus to drop data dimensionality without loss of data
information and to reduce a total capacity of deep neural network simultaneously. The proposedmethod is
expected to be advantageous in dealingwith a computational burden and data insufficient problem. In this
paper, we only verify the advantage in terms of computational cost by significantly reducing the total number of
parameters in deep neural networks.

The proposedmethod seems to have potential to be applied in othermedical image analysis problems
suffering fromhigh dimensionality of data, which include super-resolution problems,medical image
segmentation tasks, and anomaly detection.Our future researchwill cover applications of the proposedmethod
into othermedical image problems and tasks.
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