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Abstract

Machine learning-based analysis of medical images often faces several hurdles, such as the lack of
training data, the curse of the dimensionality problem, and generalization issues. One of the main
difficulties is that there exists a computational cost problem in dealing with input data of large size
matrices which represent medical images. The purpose of this paper is to introduce a framelet-pooling
aided deep learning method for mitigating computational bundles caused by large dimensionality. By
transforming high dimensional data into low dimensional components by filter banks and preserving
detailed information, the proposed method aims to reduce the complexity of the neural network and
computational costs significantly during the learning process. Various experiments show that our
method is comparable to the standard unreduced learning method, while reducing computational
burdens by decomposing large-sized learning tasks into several small-scale learning tasks.

1. Introduction

Recently, medical imaging is experiencing a paradigm shift due to a remarkable and rapid advance in deep
learning techniques. Deep learning techniques have expanded our ability via sophisticated disentangled
representation learning through training data, and appear to show superiority of performance in various
medical imaging problems including undersampled magnetic resonance imaging (MRI), sparse-view computed
tomography (CT), artifact reduction, organ segmentation, and automated disease detection. In particular, U-net
(Ronneberger et al 2015), a kind of convolutional neural network, seems to show remarkable capability of
learning image representations. However, there are some hurdles to overcome, one of which comes from the
high dimensionality, i.e., the high pixel dimension in 2D or 3D, of medical images. This paper addresses a way to
resolve this issue through a so-called framelet pooling aided deep learning network.

Machine learning performance is closely related to the number, the quality, and the pixel dimensionality of
the sampled data. For ease of explanation, let us consider a simple question to learn an unknown function
f : [0, 1]¢ — [0, 1]from a given sample (x, y), where X is an input gray scale image lyingin [0, 1]? and
y = f (x) is the corresponding output on the interval [0, 1]. Then one can ask how many training samples are
needed to approximate fwith a given tolerance € > 0. It is well-known that for Lipschitz continuous function f,
we need to sample O (¢ ~¢) points (Mallat 2016). In addition, the author in Barron (1994) observed that the

c
estimation error of the function f by 1 hidden layer neural networks is given by O(—f) + O( md
m

log rldata}
Ndata
where ng,, is the number of training data, m is the number of neurons in the hidden layer, and ¢yis a constant

depending on the regularity of f. This means that in the case of d = 5122 (i.e. considering 512 x 512 images) and
m = d, we roughly need huge training data ng,,, = O(10'?) to achieve the error of O(107}). This high number
of required training data makes the problem intractable, especially when data lies in the high dimensional space.
Such a phenomenon is referred as the curse-of-dimensionality in approximation sense. Even though the effect of
dimensionality on deep networks is relatively weaker than shallow ones (Bruna and Mallat 2013, Pascanu etal 2013,
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Mhaskar and Poggio 2016) in approximation sense, deep learning requires huge computational scale for training
process. Thus, deep networks with high dimensional data also experience the curse-of-dimensionality in terms of
computational burden.

In the literature, framelets are known to be effective in capturing key information of images. This is due to
the multiscale structure of the framelet systems, and the presence of both low pass and high pass filters in the
filter banks, which are desirable in sparsely approximating images without loss of information (Dong et al 2017).
In this work, we propose a framelet-based deep learning method to reduce computational burdens for dealing
with high dimensional data in the learning process. This method, called a framelet pooling, is based on the
decomposition of a d-dimensional input-output pair (x, y) into several d /2*-dimensional pairs
{(W1.0% Wiay): @ = 1,---,r}, where each %} , and W , are d/2%% x d matrices corresponding to kth level
framelet packet transform (Mallat 2009). Instead of learning the pair of high dimensional original data (x, y), the
proposed method tries to learn much lower dimensional pairs Wj, X, %%, .y) in parallel passion, so that we can
achieve the computational efficiency in dealing with the large size images.

As an application of our proposed method, we deal with the undersampled MRI (Hyun ef al 2018) and the
sparse-view CT problem (Jin et al 2017), where huge memory problems may arise in recovering high resolution
images. Experiments on undersampled MRI and sparse-view CT show that our framelet pooling aided reduced
method provides very similar performance to the standard unreduced method, while reducing the computation
time greatly by reducing the dimension of inputs and learning parameters in neural networks.

2. Method

Both undersampled MRI and sparse-view CT problem aim to find a reconstruction function f, which maps from
an undersampled data P# (violating Nyquist criteria) to a clinically meaningful tomographic image y. Here, the
undersampled data P can be expressed as the subsampling of the fully-sampled data P (satisfying the Nyquist
criterion)

P! = SP, ey

where S is a subsampling operator. The standard MRI and CT use the fully-sampled data P to provide
tomographic images, where the reconstruction functions fin MRI and CT are the inverse Fourier transform and
inverse Radon transform, respectively. However, when we use the undersampled data P*, these standard
methods do not work as the Nyquist criterion is not satisfied any more. (See figures 1 and 2.) For the sake of
clarity, we shall briefly state the mathematical framework of undersampled MRI and sparse-view CT in the
following subsections.

2.1. Undersampled MRI
Let y(z) be a distribution of nuclear spin density at the position z = (z;, z,). The measured k-space data P is
governed by the Fourier relation

P=7y= [y, @

where £ = (£, &) (Nishimura 2010). Therefore, with the fully-sampled data P, the reconstruction image y can
be obtained by taking the inverse Fourier transform to the measured data P,

y=Z"'P. (3)
Note that the direct inversion method (3) can also be applied to the undersampled data P,
yt = F1S*PL (4)

Here, S* is an adjoint operator of S in the #2 space. However, the image y* obtained from (4) contains aliasing
artifacts as P? violates the Nyquist criterion (see figure 1).

2.2. Sparse-view CT

In CT, the tomographic image y(z) can be regarded as the distribution of linear attenuation coefficients at the
position z = (zy, z,). For CT data acquisition, x-ray beams are transmitted at various directions

0 = (cos g, sinp), 0 < ¢ < 27. Under the assumption of monochromatic x-ray generation, the projection
data P at the direction 6 is dictated by the following Radon transform

P = Py = fL y(@)d, ©)

where Ly is the projectionline Ly ; == {z € R?: 0 - z = 5} (Seo and Woo 2013). With the fully-sampled data P
satisfying the Nyquist criterion, y can be reconstructed by the inverse Radon transform

2
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Figure 1. A k-space data in the standard MRI system is often measured with respect to two encoding directions, frequency direction &
and phase encoding direction &,. A total time for MR imaging is, roughly speaking, is proportional to the number of phase encodings,
since each phase encoding requires a repeated excitation process of nuclear spin. Thus, the undersampled MRI reconstruction
problem deal with how to reduce the number of phase encoding lines by undersampling P such like P¥, and keep its image quality
simultaneously. However, the reconstruction image y* obtained from the direct inversion method contains the aliasing artifact in the
reconstruction domain, according to the Poisson summation formula. Therefore, we aim to develop a function fto recover the
artifacted image y# to the high quality image y.

Fully-sampled Sinogram P

Full-view

Reconstructed image y

- f
S'p*
s
| —
Sparse-view
Reconstructed image y*
Undersampled

Sinogram P*

Figure 2. A sparse-view sinogram data is acquired from a sparse measurement of CT scanner with respect to projection view. The
sparse-angle sinogram data can be considered as a subsampled sinogram SP from a full-view sinogram P. The direct application of 2
to sparse-angle sinogram data with zero-filling S* generates the streaking artifacts in the reconstruction image y*. Main objective of
sparse-angle computed tomography is to find a function fto recover the artifacted image y# to the high quality image y.

y = % 'P. (6)

For the undersampled data P?, which is measured with the low sampling frequency along the projection-
view, we can apply the direct inversion formula (6) by filling zeros to unmeasured parts of undersampled data

3



10P Publishing

Mach. Learn.: Sci. Technol. 1(2020) 015009 CMHyunetal

yi = #71S*P. )

However, the reconstruction image y* contains streaking artifacts, which result from the violation of Nyquist
criterion. Figure 2 shows the schematic and visual descriptions of the sparse-view CT problem.

2.3. Preliminaries on framelets
Provided here is a brief introduction on tight frames and framelets. Interested readers may consult e.g. (Ron and
Shen 1997, Dong and Shen 2012, Shen and Xu 2013) for the detailed surveys. In this paper, we only consider the
2-dimensional case as we focus on the undersampled 2-dimensional image reconstruction. Note, however, that
itisnot hard to generalize into d-dimensional cases with d > 3.

Foragiven ¥ = {t,--,1h,} C L,(IR?),an affine system X (¥) is the collection of the dilations and the shifts
of the elements in U:

X)) = (o uk =2"P(2" - —k): 1< a<r, n€Z, keZ?. €))

We say that X (V) is a tight wavelet frame on L, (R?) if we have

R = S50 5 bfs il ©

a=1neZkeZ?
forevery f € L,(R?). In this case, each 1), is called a framelet, and ( f, 1, ,.x) is called the canonical coefficient
off.
The constructions of (anti-)symmetric and compactly supported framelets U are usually based on a
multiresolution analysis (MRA); we first find some compactly supported refinable function ¢ with a refinement
mask q,, such that

¢=2"3 qke2 - —k). (10)
ke7?
Then the MRA based construction of ¥ = {1)y,--,1,} C L,(R?) is to find finitely supported masks q ., such that
Yo =22)" q,0)¢Q2 - k), a = 1,1 (11
keZ?

The sequences qy,-+,q, are called wavelet frame mask or the high pass filters of the system, and the refinement
mask q,, is also called the low pass filter.

The unitary extension principle of (Ron and Shen 1997) provides a general theory of the construction of
MRA based tight wavelet frames. Briefly speaking, aslongas {q,, q;,:*,q,} are compactly supported and their

Fourier series q (£) = Y72 q,,(k) e ¢ ¥ satisfy
Y 13,@OF =1 and > q,63,E+1)=0 (12)
a=0 a=0

forallv € {0, 7}*\{0}and £ € [—m, 7]% theaffine system X (¥) with ¥ = {4),--+,1),} defined by (11) forms a
tight frame of L, (R?), and the filters {q, q,-,q,} form a discrete tight frame on & (Z?).
In the discrete setting, the first level framelet decomposition operator ¥ () is defined as
WO =W o0 WopW ol (13)
where % . isthe d?/27% X d? matrix given by
Woax = | (x ® q,(—)), Vx € RT,

Here, | stands for 2-dimensional down-sampling operator and ® is convolution operator with stride 1.
Likewise, we can define the second level framelet decomposition % ® by

WD =[(WioWo0) s (WigWo)s
s (W) WD (14)
where #1 o isthe d?/27* x d?/272 matrix given by
Wik = & ® q (=), V& € RT/27,
We can continue the above process to define the kth level framelet decomposition operator % ). Then since the
filter {q,, } satisfies (12), we have (# )T = T foreachl = 1,2, ---. Finally, figure 3 illustrates two examples

of framelet decompositions using Daubechies wavelet(db4) (Daubechies 1988) and piecewise linear B-spline
frame (Shen and Xu 2013).

2.4. Proposed deep learning approach for undersampled reconstruction
The objective of the undersampled reconstruction problem is to develop a deartifacting map f, which converts
y! € R¥ (artifacted image) to y € R’ (artifact removed image) with d* being a pixel dimension of reconstructed

4
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Wyer Wyair

(d) (e)

Figure 3. Framelet decomposition using various framelets (Db4 and B-spline); (a) original CT image y.; and MR image Yy, (b)—(c)
firstand second level framelet decomposition using Daubetchies 4 tab wavelet, denoted by W and W@, of the images y.; and yyg,
and (d)—(e) first and second level framelet decomposition using piecewise linear B-spline framelet, denoted by %" and %@, of the
images Y. and yyg-

image. In particular, deep learning techniques, such as U-net, infer f by minimizing training data-fidelity:

N
f= argmin}_ Z(f(x?), y?) (15)
feDLpe i=1
using a set of training data (x®, y")N |. Here, N'is the number of training data, x® denotes the artifact image
instead of (y*), DIL,, is a set of all learnable functions from a user-defined deep learning network architecture,
and . is a user-defined energy-loss function to evaluate the metric between deep learning output f (x”) and
label y®. However, if the pixel dimension of input increases, the total computational complexity in the training
process increase largely. To address this curse-of-dimensionality issue, we propose the framelet pooling aided
deep learning method to learn the deartifacting map findirectly.
Let %" and W be framelet decomposition operators defined as in subsection 2.3. The proposed framelet

pooling deep learning network aims to infer the relation between % *)x and YW *)y in the following least-
squared minimization sense:

N
f = argmin ) | L (7 ®x®), Wky®), (16)
fEDLye i=1

Here, each (% ®x®), and W*)y®), areimages with d>/272% and d?/272 pixel dimension, respectively.
For example, let YW be the second level Daubechies 4 tab wavelet decomposition. If the second level
Daubechies 4 tab wavelet decomposition is taken for % * and YW®) in the equation (16), the proposed deep
learning method tries to find the function f satisfying f{0V®x) = W®)y in the sense of (16), as shown in
figure 4.

Compared to the direct deep learning scheme (15), the framelet-pooling aided deep learning method (16) is
expected to mitigate the total computational complexity and time caused by high dimensional data in the
learning process. In this paper, we test only the case that training inputs and labels are decomposed using same
framelet decomposition % ). However, our method is not restricted only in this specific case.

3. Experiments and results

3.1. Experimental set-up for undersampled MRI '
Let {y{), € R¥ * 256} V| denote the set of MR images reconstructed with the Nyquist sampling. Using {y '/},

we compute the training input {x{); € R2% x 256} N py
x\e = 97‘18*897)'&)12, (17)
7 TMR

PN
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W2x e R128x128x16 W(Z)y € R128x128x16
Wi ‘!
W].Z ‘. . Wl 2
Wi
Wi ‘. i
— B—
Wiy ‘.
WI.Z ‘. . Wl.l
W ¥ [ Wz
L —
W ‘. Deep Learning . Wi
Wi ‘.
—il B
Wos i " N RS
y Wi ;. argmin ) 2(f(WOx), Wyl .; Wy |
feDLoy =
Wiy ‘. . Wiy
Wiy ‘. . Wi
— e
Wou | ¥ [ 1 Woa
- ——n — ‘
Wi ‘. Wi
Figure 4. A one example of the proposed method with Daubechies 4 tab wavelet for sparse-view CT problem. The dataset
x@ yON i decomposed by Daubechies 4 tap wavelet, W@ . Our proposed network tries to infer the relation between
y @R, is decomposed by p prop
(WO, W<2)y(1>}{‘11_

where 7 is the 2D discrete Fourier transform, & ! is the 2-dimensional discrete inverse Fourier transform, and
S isaspecifically user-chosen subsampling operator. In our experiments, we use the MR images Y%?R obtained
from T2-weighted turbo spin-echo pulse sequence with 4408 ms repetition time, 100 ms echo time, and 10.8 ms
echo spacing (Loizou et al 2011). The Fourier transform and its inverse are computed via fft 2 and 1 £ £t 2 in
the Python package numpy . £ t. Finally, for the sampling strategy, we choose the uniform subsampling with
factor 4 and 12 additional low frequency sampling among total 256 lines (Hyun et al 2018).

In order to test our proposed method, we decompose dataset using k level framelet decomposition %)
with various filter banks. We obtain

{0 Oxp, WOy QI (18)

where both % ®x{ and # " ®y\) contains r* pairs of 256/2%% x 256/2%* image. Here, k is the decomposition
level and ris the number of filter q .

3.2. Experimental set-up for sparse-view CT
Let {y) € R%12 * 512} ¥ beaset of CT images reconstructed with the Nyquist sampling. The corresponding
deep learning training inputs are computed in the following sense;
xQ = #71S* SHy D, (19)
1
P

where 2 is the discrete Radon transform, %~ is the filtered-back projection algorithm, and S is a user-defined
sampling operator. In our implementations, we use the projection algorithm radon and filtered back-
projection algorithm iradon in the Python package skimage . transformfor computing % and its inverse
R, respectively. Uniform subsampling with factor 6 in terms of projection-view is also used for S in (19).

Applying the same process used to generate a dataset (18) for undersampled MRI experiments, we obtain the
following decomposed dataset for sparse-view CT problem;

6
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Final Reconstruction

Input U-net Structure
Haar Wavelet Daubechies Wavelet PL Framelet

Whox
wlx = :

Whx

AT
16 16 1632 32 32 64 32 64 321632 16 16

# of parameter: 783364160

. [ Wi o(MhoX)

e | m

| M (mhox) 16 16 16 32 16 32 16 16
: 4 of parameter: 13824-160r?

Figure 5. Image restoration performances of U” —NET (unreduced), UV’ ~NET (one pooling), and U® —NET (double pooling)
using undersampled MRI and 1500 training data using various filter banks with r filters. We set all networks to have 16 feature depth,
which means that channels in the network paths are multiples of 16. Although the numbers of learning parameters and training speed
are very different, the final results are very similar.

(o ©OxE, wOyOyN (20)

where #® is a klevel framelet decomposition.

In our whole experiments, we use a first and second level framelet decomposition (k = 1, 2) with three
different framelets (Haar wavelet(Haar), Daubechies 4 tap wavelet(Db4), and piecewise linear B-spline
framelet(PL)).

3.3.Network configuration

To test our proposed method, we adapt the U-net architecture (Ronneberger et al 2015), as shown in figure 5,
where the first half of network is the contracting path and the last half is the expansive path. At the first layer in
U-net in figure 5, the input % ®x is convolved with the set of convolution filters C™" so that it generates a set of
feature maps h), given by

h® = ReLU(CY @, % ®x),

where ReLU is the rectified linear unit ReLU(x) = max{x, 0} and ®, stands for the convolution with stride 1.
We repeat this process to get h® = ReLU(C?® ®; h™")and apply max pooling to get h®. Through this
contracting path, we can obtain low dimensional feature maps by applying either convolution or max pooling.
In the expansive path, we use the2 x 2 average unpooling instead of max-pooling to restore the size of the
output. To restore details in image, the upsampled output is concatenated with the correspondingly feature from
the contracting path. Atthelastlayeral x 1 convolution is used to combine each feature with one integrated
feature (Ronneberger et al 2015).

The U-net in the top row of figure 5 will be denoted by U® —NET. The U-net in the middle row, denoted by
UMW —NET, is the reduced network by eliminating two 3 x 3 convolution layers and one pooling/unpooling
layer in the first and last part of U —NET. Similarly, U® —NET is the reduced network by eliminating 3 x 3
convolution layers and pooling/unpooling layer in the first and last part of U’ —~NET. Thus, this process can be
viewed as the replacement of operations with unknown and trainable parameters into framelet operations with
known and fixed parameters. In our experiments, U’ —NET is used to learn fin the sense of direct learning
(15). The reduced U® —NET (k = 1, 2) is trained with k level framelet decomposed dataset in the sense of (16).

3.4. Experimental result

All training processes are performed in two Intel(R) Xeon(R) CPU E5-2630 v4, 2.20 GHz, 128 GB DDR4 RAM,
and four NVIDIA GTX-1080ti computer system. We initialize all weights by a normal distribution with zero-
centered and 0.01 standard deviation, under the Tensorflow environment (Abadi et al 2015). We use the £2 loss
for theloss function .%. The loss function is minimized using the Adam Optimizer and the batch normalization
for fast convergence (Kingma and Ba 2014, Ioffe and Szegedy 2015). For stability on training, the small learning
rate 10~ °is used. In order to guarantee the convergence of loss function, the network is trained until the training
loss seems to converge sufficiently.
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UM-net
# of data Input U0)-net
(N:1500) Haar Wavelet Daubetchies Wavelet PL Framelet

Sparse-view CT

Example 1

Sparse-view CT

Example 2

Undersampled MRI

Example 1

Undersampled MRI

Example 2

Figure 6. Image restoration performances of U’ —NET (unreduced), UV —NET (one framelet pooling),and U® —NET (double
framelet pooling) using undersampled MRI and 1500 training data.

Table 1. Table of the average computational time per epoch(second/epoch) in the undersampled MRI problem.

Average computational time per epoch (second/epoch)

U®—-NET U®_NET
# of training data U©®—_NET
Haar Db4 PL Haar Db4 PL
1500 11.798 03 4.664 32 4.430 48 8.323 20 3.636 46 3.757 58 12.988 98
1000 7.650 65 3.431 65 3.258 52 5.616 59 2.441 17 2.53221 8.312133
500 3.763 03 1.704 58 1.753 37 2.654 04 1.273 35 1.311 74 4.675 96
100 0.718 29 0.335 26 0.334 08 0.546 98 0.223 54 0.257 95 0.940 70

To avoid overfitting issue, we use the lightened U-net network U® -net, compared to the original deep
U-net structure suggested in the paper (Ronneberger et al 2015), and apply the batch normalization technique,
known as one efficient way to mitigate the overfitting phenomenon (Ioffe and Szegedy 2015). Noting that test
errors, as shown in tables 2 and 4, are approximately zero, there is no overfitting or underfitting.

Figures 5 and 6 show reconstruction results from U® —NET, U —NET, and U® —NET. Three models
show similar reconstruction performances, regardless of their originated problem and their original data
dimension. Quantitative evaluations and comparisons for the application on the undersampled MRI problem
are summarized in tables 1, 2, and figure 7. For the sparse-view CT application, evaluations and comparisons are
given in tables 3, 4, and figure 8. Tables 1 and 3 shows comparisons of average computational time per epoch
among U@ —NET, UY—NET, and U® —NET. The average computational time is computed by dividing the
total computational time by the total number of epoch. Tables 2 and 4 contains test error evaluations and
comparisons using two different metrics; mean square error (MSE) and structure similarity (SSIM) (Wang et al
2004).

These experimental results support the fact that the proposed method reduces the total computational time
efficiently and provides competitive results compared to the direct learning algorithm using high dimensional
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Table 2. Quantitative test error evaluations for undersampled MRI problem using two different metrics.

MSE(~10~%)
# of training data U©®—-NET UTNET UNET
Haar Db4 PL Haar Db4 PL
1500 3.427 66 3.734 20 3.716 04 3.613 57 4.752 85 4.962 53 4.725 60
1000 3.723 76 3.998 06 3.97593 3.931 89 5.030 00 5.032 32 4.917 54
500 4.415 41 4.477 17 4.622 86 4.374 41 5.382 41 5.474 81 5.252 60
100 6.088 67 6.667 04 6.714 41 6.474 48 7.13172 7.141 36 6.916 11
SSIM
# of training data UO®_NET UD_NET U®_NET
Haar Db4 PL Haar Db4 PL

1500 0.812 43 0.792 51 0.798 06 0.799 25 0.746 33 0.737 04 0.736 48
1000 0.801 22 0.787 88 0.788 61 0.790 88 0.735 94 0.735 46 0.744 40
500 0.774 55 0.772 60 0.772 19 0.769 96 0.713 41 0.714 64 0.719 55
100 0.709 40 0.698 64 0.708 57 0.720 80 0.648 15 0.647 67 0.673 78

Table 3. Table of the average computational time per epoch in the sparse-view CT problem.

Average computational time per epoch (second/epoch)

. UO—NET U®—NET
# of training data U©_NET
Haar Db4 PL Haar Db4
1500 39.476 37 17.292 48 18.342 27 31.422 37 12.099 81 11.755 51
1000 26.425 27 11.803 29 12.341 89 20.916 42 8.276 48 8.214 92
500 13.006 67 6.000 89 6.063 89 10.544 22 4.102 79 4.035 06
100 2.465 22 1.040 74 1.124 65 1.953 24 0.752 94 0.81197

images. Namely, our reduced method provides very similar performance to the standard unreduced method
(U©® —NET), while reducing the computation time greatly by reducing the input dimension.

We also test our proposed method with three different framelets and compare performances, as shown in
tables 2 and 4 for the quantitative evaluation and tables 1 and 3 for the computational time. Experimental results
report that Haar and Db4 Wavelet reduce the computational time more efficiently than PL framelet, but PL
framelet exhibits the better performance than Haar and Db4 Wavelet. Compared to Haar and Db4 consisting of
4 filter banks, PL framelet has 9 filter banks (i.e. the number of filter banks equals the size of filters), which can
increase the computational time. However, it should be noted that Haar and Db4 are orthonormal bases while
PL framelet is a redundant tight frame system. This means that, thanks to the redundancy, it is likely that the
error generated by the nonlinear deep learning process can lie in the nontrivial null space of the reconstruction
operator, which can make the PL framelet yield better results than the orthonormal basis (Haar and Db4) (Dong
etal 2017). We would like to mention that the computational time increases in the case of U® —NET with PL
framelet in the undersampled MRI problem, compared to the original network U® —NET. We can observe
that the reduction of computational time depends on the feature depth of network. In order to reduce total
computational complexities of experiments as possible, our networks are set to have 16 feature depth, as
described in figure 5. However, when the feature depth increases, U® —NET with PL framelet also exhibits the
computational time reduction ability, as shown in the table 5.

Let us compare a memory requirement on a training process of each model, based on the estimation of
memory occupation in the paper (Schlemper et al 2018). The U -net has 341152 trainable parameters, which
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Figure 7. Qualitative comparison of the proposed method for undersampled MRI reconstruction problem.

Table 4. Quantitative error evaluations for sparse-view CT problem using two different metrics.

MSE(~10"%)
UW—NET U@—NET
# of training data UO®_NET
Haar Db4 PL Haar Db4
1500 2.620 30 2.920 02 2.956 05 2.93551 3.875 06 4.285 39
1000 2.694 98 3.03115 3.101 20 2.973 95 4.200 75 4.427 56
500 2.803 45 3.21323 3.326 94 3.093 97 4.420 89 5.402 28
100 3.814 32 4.32176 4.725 59 4.101 38 5.657 74 7.582 66
SSIM

# of training data UO_NET UD—_NET U®_NET

Haar Db4 PL Haar Db4
1500 0.876 31 0.869 37 0.866 60 0.869 59 0.847 95 0.828 65
1000 0.875 33 0.867 61 0.863 57 0.869 25 0.844 44 0.823 83
500 0.874 51 0.864 93 0.857 50 0.867 28 0.839 32 0.809 27
100 0.860 39 0.848 86 0.840 55 0.848 63 0.828 47 0.804 64

can occupy 1.36MB memory in 32-bits single precision system. On the other hands, the UV -netand U® -net
contain 78 976 and 16 384 unknown variables occupying 0.30 MB and 0.06 MB memory, respectively. Here, the
number of filter ris assumed to be 4. In a training stage, an efficient back-propagation requires storage of all the
intermediate activation maps. In our networks, activation maps in each convolution layer should be stored.
Thus, a memory requirement can be estimated roughly by

Z Nbatchsize X size of feature X Nieature depth X 4 bytes x 2, (21

convolution layer

where Nyqichsize 18 @ mini-batch size, dgize of feature 15 a pixel dimension of feature, and Nfeature depth is @ depth of
feature in each convolution layer. Here, we multiply 2, because a forward computation and backward gradient
updating exist in a training procedure. In our experiments, we used a mini-batch size 8 and set feature depths to
be multiples of 16. In the case of CT image with 512 by 512 pixel resolution, the U® -net, U -net, and U® -net
require approximately 1.34 GB, 0.40 GB, and 0.10 GB memory, respectively. Thus, the proposed method can
reduce significantly the total occupied memory in a training stage of deep neural networks.

10



10P Publishing

Mach. Learn.: Sci. Technol. 1 (2020) 015009

CMHyunetal

Test Input

Test Label

U(-net

UO-net
Haar Wavelet

Daubetchies Wavelet

PL Framelet

Figure 8. Qualitative comparison of the proposed method for sparse-view CT reconstruction problem.

Table 5. Table of the average computational time per epoch in
undersampled MRI problem, when using the proposed method
with PL framelet and 1000 training data (N = 1000).

Average computational time per epoch (second/epoch)

Feature depth U©-NET U®-NET U®-NET
16 7.650 65 5.616 59 8312133
32 12.780 46 6.186 188 8.634 091
64 26.208 05 8.805 362 8.979 816

Table 6. Performance evaluations (average computational time per epoch (second/epoch) and mean squared error (MSE)) of the
proposed method for undersampled MRI and sparse-view CT problem, when the original deep U-net structure is used for
U® -netand each network is trained from 1500 training data (N = 1500).

Performance evaluations on undersampled MRI problem

U®-NET U®_NET

Performance U©®_NET

Haar Db4 PL Haar Db4 PL
Computation time 52.705 35 15.297 09 15.568 55 20.259 11 7.758 19 7.621 06 22.347 41
MSE (~107%) 3.742 12 4.208 49 4.192 82 4.090 67 4.812 88 4.645 87 4.108 83

Performance evaluations on sparse-view CT problem

Performance U©®_NET UD_NET U®_NET

Haar Db4 PL Haar Db4
Computation Time 184.496 52 53.632 90 53.265 28 70.731 39 20.255 99 21.359 46
MSE (~107%) 0.261 50 0.270 65 0.272 49 0.269 25 0.294 37 0.303 45

Lastly, we also test our proposed method in the case when the original deep U-net structure, described in the
paper (Ronneberger et al 2015), is used for U® -net. As shown in table 6, we can observe that the proposed
method also shows a powerful ability on reducing computational burdens and provides competitive

reconstruction results.
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4, Conclusion and discussion

In this paper, we proposed the framelet pooling aided deep learning network to reduce computational burdens
in the training process. The proposed method decomposes large-scale learning tasks into several small-scale
learning tasks through the framelet packet transformation so that we can handle large-scale medical imaging in a
limited computing environment. Experimental results on undersampled MRI and sparse-view CT
reconstruction problems show that our framelet pooling method is at least comparable to the standard deep
learning based method, but is able to reduce total computational time in the training process significantly.
Hence, we expect that our method is not limited to the 2-dimensional medical imaging problem. It seems
possible that the framelet pooling method can be extended to deep learning problems with large-scale
3-dimensional medical imaging, which inevitably suffers from high computational complexity due to the high
dimensionality of dataset.

Deep convolutional neural network with a large size of receptive field seems to be advantageous in capturing
global features and properties, compared to patch-wise learning approaches. For instance, the local patch-based
approach can solve denoising problems efficiently, since noise patterns are quite similar in each local patch.
However, this approach may not deal with aliasing artifacts, which occur in the undersampled MRI problem
with uniform subsampling described in the section 2.1 and figure 1. It is because aliasing patterns in figure 1 are
generated by the global image domain. To deal with global aliasing artifacts, U-nets without framelet pooling
possess high capacity, which requires huge computation power and a large number of data for training the
network. Our method is designed to enlarge the receptive field size without increasing a total capacity by using
the concept of framelet pooling.

In the experiments, we can see that the choice of filter banks indeed affects the performance of the proposed
method. The use of tight frame can increase the reconstruction accuracy thanks to rich representation under the
redundant system, but the computational time reduction ability can be marginal due to the increasing number
of convolutions. In contrast, the orthogonal wavelet representation provides high computational time reduction
by only using 4 filters, but generates less accurate results. Hence, the future work will focus on the construction
of framelet transformation which is both adaptive to a given task (Cai et al 2014) and computationally efficient. It
would also be interesting to provide a theoretical analysis on the approximation property of our deep learning
network.

Compared to the recent paper (Ye et al 2018) on framelet-based deep learning, we focus on dimensionality
reduction of data, where analytic framelet filter banks allow us to drop data dimensionality without loss of data
information and to reduce a total capacity of deep neural network simultaneously. The proposed method is
expected to be advantageous in dealing with a computational burden and data insufficient problem. In this
paper, we only verify the advantage in terms of computational cost by significantly reducing the total number of
parameters in deep neural networks.

The proposed method seems to have potential to be applied in other medical image analysis problems
suffering from high dimensionality of data, which include super-resolution problems, medical image
segmentation tasks, and anomaly detection. Our future research will cover applications of the proposed method
into other medical image problems and tasks.
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